11,740 research outputs found

    Solar fusion cross sections. II. The pp chain and CNO cycles

    Get PDF
    We summarize and critically evaluate the available data on nuclear fusion cross sections important to energy generation in the Sun and other hydrogen-burning stars and to solar neutrino production. Recommended values and uncertainties are provided for key cross sections, and a recommended spectrum is given for 8B solar neutrinos. We also discuss opportunities for further increasing the precision of key rates, including new facilities, new experimental techniques, and improvements in theory. This review, which summarizes the conclusions of a workshop held at the Institute for Nuclear Theory, Seattle, in January 2009, is intended as a 10-year update and supplement to Reviews of Modern Physics 70 (1998) 1265.Comment: 54 pages, 20 figures, version to be published in Reviews of Modern Physics; various typos corrected and several updates mad

    Solar fusion cross sections II: the pp chain and CNO cycles

    Get PDF
    We summarize and critically evaluate the available data on nuclear fusion cross sections important to energy generation in the Sun and other hydrogen-burning stars and to solar neutrino production. Recommended values and uncertainties are provided for key cross sections, and a recommended spectrum is given for 8B solar neutrinos. We also discuss opportunities for further increasing the precision of key rates, including new facilities, new experimental techniques, and improvements in theory. This review, which summarizes the conclusions of a workshop held at the Institute for Nuclear Theory, Seattle, in January 2009, is intended as a 10-year update and supplement to Reviews of Modern Physics 70 (1998) 1265.Comment: 54 pages, 20 figures, version to be published in Reviews of Modern Physics; various typos corrected and several updates mad

    Perspectives of Nuclear Physics in Europe: NuPECC Long Range Plan 2010

    Get PDF
    The goal of this European Science Foundation Forward Look into the future of Nuclear Physics is to bring together the entire Nuclear Physics community in Europe to formulate a coherent plan of the best way to develop the field in the coming decade and beyond.<p></p> The primary aim of Nuclear Physics is to understand the origin, evolution, structure and phases of strongly interacting matter, which constitutes nearly 100% of the visible matter in the universe. This is an immensely important and challenging task that requires the concerted effort of scientists working in both theory and experiment, funding agencies, politicians and the public.<p></p> Nuclear Physics projects are often “big science”, which implies large investments and long lead times. They need careful forward planning and strong support from policy makers. This Forward Look provides an excellent tool to achieve this. It represents the outcome of detailed scrutiny by Europe’s leading experts and will help focus the views of the scientific community on the most promising directions in the field and create the basis for funding agencies to provide adequate support.<p></p> The current NuPECC Long Range Plan 2010 “Perspectives of Nuclear Physics in Europe” resulted from consultation with close to 6 000 scientists and engineers over a period of approximately one year. Its detailed recommendations are presented on the following pages. For the interested public, a short summary brochure has been produced to accompany the Forward Look.<p></p&gt

    Removal of acid gases and oxides of nitrogen from space cabin atmospheres

    Get PDF
    Removal of acid gases and oxides of nitrogen from spacecraft cabin atmospheres at ambient temperature

    Nuclear Reactions from Lattice QCD

    Full text link
    One of the overarching goals of nuclear physics is to rigorously compute properties of hadronic systems directly from the fundamental theory of strong interactions, Quantum Chromodynamics (QCD). In particular, the hope is to perform reliable calculations of nuclear reactions which will impact our understanding of environments that occur during big bang nucleosynthesis, the evolution of stars and supernovae, and within nuclear reactors and high energy/density facilities. Such calculations, being truly ab initio, would include all two-nucleon and three- nucleon (and higher) interactions in a consistent manner. Currently, lattice QCD provides the only reliable option for performing calculations of some of the low- energy hadronic observables. With the aim of bridging the gap between lattice QCD and nuclear many-body physics, the Institute for Nuclear Theory held a workshop on Nuclear Reactions from Lattice QCD on March 2013. In this review article, we report on the topics discussed in this workshop and the path planned to move forward in the upcoming years.Comment: 35 pages, 13 figures, 1 table, review article for the "Nuclear Reactions from Lattice QCD" workshop hosted by the Institute for Nuclear Theory on March 2013; version 2 includes updated references and extended discussion of previous wor

    Proceedings of the 2009 Coal Operators\u27 Conference

    Get PDF
    Proceedings of the 2009 Coal Operators\u27 Conference. All papers in these proceedings are peer reviewed. ISBN: 978 1 920806 95 8
    • …
    corecore