246 research outputs found

    The Stretch Factor of L1L_1- and LL_\infty-Delaunay Triangulations

    Get PDF
    In this paper we determine the stretch factor of the L1L_1-Delaunay and LL_\infty-Delaunay triangulations, and we show that this stretch is 4+222.61\sqrt{4+2\sqrt{2}} \approx 2.61. Between any two points x,yx,y of such triangulations, we construct a path whose length is no more than 4+22\sqrt{4+2\sqrt{2}} times the Euclidean distance between xx and yy, and this bound is best possible. This definitively improves the 25-year old bound of 10\sqrt{10} by Chew (SoCG '86). To the best of our knowledge, this is the first time the stretch factor of the well-studied LpL_p-Delaunay triangulations, for any real p1p\ge 1, is determined exactly

    Lower bounds on the dilation of plane spanners

    Full text link
    (I) We exhibit a set of 23 points in the plane that has dilation at least 1.43081.4308, improving the previously best lower bound of 1.41611.4161 for the worst-case dilation of plane spanners. (II) For every integer n13n\geq13, there exists an nn-element point set SS such that the degree 3 dilation of SS denoted by δ0(S,3) equals 1+3=2.7321\delta_0(S,3) \text{ equals } 1+\sqrt{3}=2.7321\ldots in the domain of plane geometric spanners. In the same domain, we show that for every integer n6n\geq6, there exists a an nn-element point set SS such that the degree 4 dilation of SS denoted by δ0(S,4) equals 1+(55)/2=2.1755\delta_0(S,4) \text{ equals } 1 + \sqrt{(5-\sqrt{5})/2}=2.1755\ldots The previous best lower bound of 1.41611.4161 holds for any degree. (III) For every integer n6n\geq6 , there exists an nn-element point set SS such that the stretch factor of the greedy triangulation of SS is at least 2.02682.0268.Comment: Revised definitions in the introduction; 23 pages, 15 figures; 2 table

    Upper and Lower Bounds for Competitive Online Routing on Delaunay Triangulations

    Full text link
    Consider a weighted graph G where vertices are points in the plane and edges are line segments. The weight of each edge is the Euclidean distance between its two endpoints. A routing algorithm on G has a competitive ratio of c if the length of the path produced by the algorithm from any vertex s to any vertex t is at most c times the length of the shortest path from s to t in G. If the length of the path is at most c times the Euclidean distance from s to t, we say that the routing algorithm on G has a routing ratio of c.We present an online routing algorithm on the Delaunay triangulation with competitive and routing ratios of 5.90. This improves upon the best known algorithm that has competitive and routing ratio 15.48. The algorithm is a generalization of the deterministic 1-local routing algorithm by Chew on the L1-Delaunay triangulation. When a message follows the routing path produced by our algorithm, its header need only contain the coordinates of s and t. This is an improvement over the currently known competitive routing algorithms on the Delaunay triangulation, for which the header of a message must additionally contain partial sums of distances along the routing path.We also show that the routing ratio of any deterministic k-local algorithm is at least 1.70 for the Delaunay triangulation and 2.70 for the L1-Delaunay triangulation. In the case of the L1-Delaunay triangulation, this implies that even though there exists a path between two points x and y whose length is at most 2.61|[xy]| (where |[xy]| denotes the length of the line segment [xy]), it is not always possible to route a message along a path of length less than 2.70|[xy]|. From these bounds on the routing ratio, we derive lower bounds on the competitive ratio of 1.23 for Delaunay triangulations and 1.12 for L1-Delaunay triangulations

    The Stretch Factor of Hexagon-Delaunay Triangulations

    Get PDF
    The problem of computing the exact stretch factor (i.e., the tight bound on the worst case stretch factor) of a Delaunay triangulation is one of the longstanding open problems in computational geometry. Over the years, a series of upper and lower bounds on the exact stretch factor have been obtained but the gap between them is still large. An alternative approach to solving the problem is to develop techniques for computing the exact stretch factor of "easier" types of Delaunay triangulations, in particular those defined using regular-polygons instead of a circle. Tight bounds exist for Delaunay triangulations defined using an equilateral triangle and a square. In this paper, we determine the exact stretch factor of Delaunay triangulations defined using a regular hexagon: It is 2. We think that the main contribution of this paper are the two techniques we have developed to compute tight upper bounds for the stretch factor of Hexagon-Delaunay triangulations

    Degree Four Plane Spanners: Simpler and Better

    Get PDF
    Let P be a set of n points embedded in the plane, and let C be the complete Euclidean graph whose point-set is P. Each edge in C between two points p, q is realized as the line segment [pq], and is assigned a weight equal to the Euclidean distance |pq|. In this paper, we show how to construct in O(nlg{n}) time a plane spanner of C of maximum degree at most 4 and of stretch factor at most 20. This improves a long sequence of results on the construction of bounded degree plane spanners of C. Our result matches the smallest known upper bound of 4 by Bonichon et al. on the maximum degree while significantly improving their stretch factor upper bound from 156.82 to 20. The construction of our spanner is based on Delaunay triangulations defined with respect to the equilateral-triangle distance, and uses a different approach than that used by Bonichon et al. Our approach leads to a simple and intuitive construction of a well-structured spanner, and reveals useful structural properties of the Delaunay triangulations defined with respect to the equilateral-triangle distance

    The Stretch Factor of the Delaunay Triangulation Is Less Than 1.998

    Full text link
    Let SS be a finite set of points in the Euclidean plane. Let DD be a Delaunay triangulation of SS. The {\em stretch factor} (also known as {\em dilation} or {\em spanning ratio}) of DD is the maximum ratio, among all points pp and qq in SS, of the shortest path distance from pp to qq in DD over the Euclidean distance pq||pq||. Proving a tight bound on the stretch factor of the Delaunay triangulation has been a long standing open problem in computational geometry. In this paper we prove that the stretch factor of the Delaunay triangulation of a set of points in the plane is less than ρ=1.998\rho = 1.998, improving the previous best upper bound of 2.42 by Keil and Gutwin (1989). Our bound 1.998 is better than the current upper bound of 2.33 for the special case when the point set is in convex position by Cui, Kanj and Xia (2009). This upper bound breaks the barrier 2, which is significant because previously no family of plane graphs was known to have a stretch factor guaranteed to be less than 2 on any set of points.Comment: 41 pages, 16 figures. A preliminary version of this paper appeared in the Proceedings of the 27th Annual Symposium on Computational Geometry (SoCG 2011). This is a revised version of the previous preprint [v1

    Bounded-degree Plane Geometric Spanners: Connecting the Dots Between Theory and Practice

    Get PDF
    The construction of bounded-degree plane geometric spanners has been a focus of interest since 2002 when Bose, Gudmundsson, and Smid proposed the first algorithm to construct such spanners. To date, eleven algorithms have been designed with various trade-offs in degree and stretch factor. We have implemented these sophisticated algorithms in C++ using the CGAL library and experimented with them using large synthetic and real-world pointsets. Our experiments have revealed their practical behavior and real-world efficacy. We share the implementations via GitHub for broader uses and future research. We present a simple practical algorithm, named AppxStretchFactor, that can estimate stretch factors (obtains lower bounds on the exact stretch factors) of geometric spanners – a challenging problem for which no practical algorithm is known yet. In our experiments with bounded-degree plane geometric spanners, we find that AppxStretchFactor estimates stretch factors almost precisely. Further, it gives linear runtime performance in practice for the pointset distributions considered in this work, making it much faster than the naive Dijkstra-based algorithm for calculating stretch factors

    Algorithmic and Combinatorial Results on Fence Patrolling, Polygon Cutting and Geometric Spanners

    Get PDF
    The purpose of this dissertation is to study problems that lie at the intersection of geometry and computer science. We have studied and obtained several results from three different areas, namely–geometric spanners, polygon cutting, and fence patrolling. Specifically, we have designed and analyzed algorithms along with various combinatorial results in these three areas. For geometric spanners, we have obtained combinatorial results regarding lower bounds on worst case dilation of plane spanners. We also have studied low degree plane lattice spanners, both square and hexagonal, of low dilation. Next, for polygon cutting, we have designed and analyzed algorithms for cutting out polygon collections drawn on a piece of planar material using the three geometric models of saw, namely, line, ray and segment cuts. For fence patrolling, we have designed several strategies for robots patrolling both open and closed fences
    corecore