181 research outputs found

    RuDaCoP: The Dataset for Smartphone-based Intellectual Pedestrian Navigation

    Full text link
    This paper presents the large and diverse dataset for development of smartphone-based pedestrian navigation algorithms. This dataset consists of about 1200 sets of inertial measurements from sensors of several smartphones. The measurements are collected while walking through different trajectories up to 10 minutes long. The data are accompanied by the high accuracy ground truth collected with two foot-mounted inertial measurement units and post-processed by the presented algorithms. The dataset suits both for training of intellectual pedestrian navigation algorithms based on learning techniques and for development of pedestrian navigation algorithms based on classical approaches. The dataset is accessible at http://gartseev.ru/projects/ipin2019

    Advanced Pedestrian Positioning System to Smartphones and Smartwatches

    Get PDF
    In recent years, there has been an increasing interest in the development of pedestrian navigation systems for satellite-denied scenarios. The popularization of smartphones and smartwatches is an interesting opportunity for reducing the infrastructure cost of the positioning systems. Nowadays, smartphones include inertial sensors that can be used in pedestrian dead-reckoning (PDR) algorithms for the estimation of the user's position. Both smartphones and smartwatches include WiFi capabilities allowing the computation of the received signal strength (RSS). We develop a new method for the combination of RSS measurements from two different receivers using a Gaussian mixture model. We also analyze the implication of using a WiFi network designed for communication purposes in an indoor positioning system when the designer cannot control the network configuration. In this work, we design a hybrid positioning system that combines inertial measurements, from low-cost inertial sensors embedded in a smartphone, with RSS measurements through an extended Kalman filter. The system has been validated in a real scenario, and results show that our system improves the positioning accuracy of the PDR system thanks to the use of two WiFi receivers. The designed system obtains an accuracy up to 1.4 m in a scenario of 6000 m2

    사물인터넷을 위한 무선 실내 측위 알고리즘

    Get PDF
    학위논문(박사) -- 서울대학교대학원 : 공과대학 전기·정보공학부, 2022.2. 김성철.실내 위치 기반 서비스는 스마트폰을 이용한 실내에서의 경로안내, 스마트 공장에서의 자원 관리, 실내 로봇의 자율주행 등 많은 분야에 접목될 수 있으며, 사물인터넷 응용에도 필수적인 기술이다. 다양한 위치 기반 서비스를 구현하기 위해서는 정확한 위치 정보가 필요하며, 적합한 거리 및 위치를 추정 기술이 핵심적이다. 야외에서는 위성항법시스템을 이용해서 위치 정보를 획득할 수 있다. 본 학위논문에서는 와이파이 기반 측위 기술에 대해 다룬다. 구체적으로, 전파의 신호 세기 및 도달 시간을 이용한 정밀한 실내 위치 추정을 위한 세 가지 기술에 대해 다룬다. 먼저, 비가시경로 환경에서의 거리 추정 정확도를 향상시켜 거리 기반 측위의 정확도를 향상시키는 하이브리드 알고리즘을 제안한다. 제안하 알고리즘은듀얼 밴드 대역의 신호세기를 감쇄량을 측정하여 거리 기반 측위 기법을 적용할 때, 거리 추정부 단계만을 데이터 기반 학습을 이용한 깊은 신경망 회귀 모델로 대체한 방안이다. 적절히 학습된 깊은 회귀 모델의 사용으로 비가시경로 환경에서 발생하는 거리 추정 오차를 효과적으로 감소시킬 수 있으며, 결과적으로 위치 추정 오차 또한 감소시켰다. 제안한 방법을 실내 광선추적 기반 모의실험으로 평가했을 때, 기존 기법들에 비해서 위치 추정 오차를 중간값을 기준으로 22.3% 이상 줄일 수 있음을 검증했다. 추가적으로, 제안한 방법은 실내에서의 AP 위치변화 등에 강인함을 확인했다. 다음으로, 본 논문에서는 비가시경로에서 단일 대역 수신신호세기를 측정했을 때 비가시경로가 많은 실내 환경에서 위치 추정 정확도를 높이기 위한 방안을 제안한다. 단일 대역 수신신호세기를 이용하는 방안은 기존에 이용되는 와이파이, 블루투스, 직비 등의 기반시설에 쉽게 적용될 수 있기 때문에 널리 이용된다. 하지만 신호 세기의 단일 경로손실 모델을 이용한 거리 추정은 상당한 오차를 지녀서 위치 추정 정확도를 감소시킨다. 이러한 문제의 원인은 단일 경로손실 모델로는 실내에서의 복잡한 전파 채널 특성을 반영하기 어렵기 때문이다. 본 연구에서는 실내 위치 추정을 위한 목적으로, 중첩된 다중 상태 경로 감쇄 모델을 새롭게 제시한다. 제안한 모델은 가시경로 및 비가시경로에서의 채널 특성을 고려하여 잠재적인 후보 상태들을 지닌다. 한 순간의 수신 신호 세기 측정치에 대해 각 기준 기지국별로 최적의 경로손실 모델 상태를 결정하는 효율적인 방안을 제시한다. 이를 위해 기지국별 경로손실모델 상태의 조합에 따른 측위 결과를 평가할 지표로서 비용함수를 정의하였다. 각 기지국별 최적의 채널 모델을 찾는데 필요한 계산 복잡도는 기지국 수의 증가에 따라 기하급수적으로 증가하는데, 유전 알고리즘을 이용한 탐색을 적용하여 계산량을 억제하였다. 실내 광선추적 모의실험을 통한 검증과 실측 결과를 이용한 검증을 진행하였으며, 제안한 방안은 실제 실내 환경에서 기존의 기법들에 비해 위치 추정 오차를 약 31% 감소시켰으며 평균적으로 1.92 m 수준의 정확도를 달성함을 확인했다. 마지막으로 FTM 프로토콜을 이용한 실내 위치 추적 알고리즘에 대해 연구하였다. 스마트폰의 내장 관성 센서와 와이파이 통신에서 제공하는 FTM 프로토콜을 통한 거리 추정을 이용하여 실내에서 사용자의 위치를 추적할 수 있다. 하지만 실내의 복잡한 다중경로 환경으로 인한 피크 검출 실패는 거리 측정치에 편향성을 유발한다. 또한 사용하는 디바이스의 종류에 따라 예상치 못한 거리 오차가 발생할 수있다. 본 논문에서는 실제 환경에서 FTM 거리 추정을 이용할 때 발생할 수 있는 오차들을 고려하고 이를 보상하는 방안에 대해 제시한다. 확장 칼만 필터와 결합하여 FTM 결과를 사전필터링 하여 이상값을 제거하고, 거리 측정치의 편향성을 제거하여 위치 추적 정확도를 향상시킨다. 실내에서의 실험 결과 제안한 알고리즘은 거치 측정치의 편향성을 약 44-65% 감소시켰으며 최종적으로 사용자의 위치를 서브미터급으로 추적할 수 있음을 검증했다.Indoor location-based services (LBS) can be combined with various applications such as indoor navigation for smartphone users, resource management in smart factories, and autonomous driving of robots. It is also indispensable for Internet of Things (IoT) applications. For various LBS, accurate location information is essential. Therefore, a proper ranging and positioning algorithm is important. For outdoors, the global navigation satellite system (GNSS) is available to provide position information. However, the GNSS is inappropriate indoors owing to the issue of the blocking of the signals from satellites. It is necessary to develop a technology that can replace GNSS in GNSS-denied environments. Among the various alternative systems, the one of promising technology is to use a Wi-Fi system that has already been applied to many commercial devices, and the infrastructure is in place in many regions. In this dissertation, Wi-Fi based indoor localization methods are presented. In the specific, I propose the three major issues related to accurate indoor localization using received signal strength (RSS) and fine timing measurement (FTM) protocol in the 802.11 standard for my dissertation topics. First, I propose a hybrid localization algorithm to boost the accuracy of range-based localization by improving the ranging accuracy under indoor non-line-of-sight (NLOS) conditions. I replaced the ranging part of the rule-based localization method with a deep regression model that uses data-driven learning with dual-band received signal strength (RSS). The ranging error caused by the NLOS conditions was effectively reduced by using the deep regression method. As a consequence, the positioning error could be reduced under NLOS conditions. The performance of the proposed method was verified through a ray-tracing-based simulation for indoor spaces. The proposed scheme showed a reduction in the positioning error of at least 22.3% in terms of the median root mean square error. Next, I study on positioning algorithm that considering NLOS conditions for each APs, using single band RSS measurement. The single band RSS information is widely used for indoor localization because they can be easily implemented by using existing infrastructure like Wi-Fi, Blutooth, or Zigbee. However, range estimation with a single pathloss model produces considerable errors, which degrade the positioning performance. This problem mainly arises because the single pathloss model cannot reflect diverse indoor radio wave propagation characteristics. In this study, I develop a new overlapping multi-state model to consider multiple candidates of pathloss models including line-of-sight (LOS) and NLOS states, and propose an efficient way to select a proper model for each reference node involved in the localization process. To this end, I formulate a cost function whose value varies widely depending on the choice of pathloss model of each access point. Because the computational complexity to find an optimal channel model for each reference node exponentially increases with the number of reference nodes, I apply a genetic algorithm to significantly reduce the complexity so that the proposed method can be executed in real-time. Experimental validations with ray-tracing simulations and RSS measurements at a real site confirm the improvement of localization accuracy for Wi-Fi in indoor environments. The proposed method achieves up to 1.92~m mean positioning error under a practical indoor environment and produces a performance improvement of 31.09\% over the benchmark scenario. Finally, I investigate accurate indoor tracking algorithm using FTM protocol in this dissertation. By using the FTM ranging and the built-in sensors in a smartphone, it is possible to track the user's location in indoor. However, the failure of first peak detection due to the multipath effect causes a bias in the FTM ranging results in the practical indoor environment. Additionally, the unexpected ranging error dependent on device type also degrades the indoor positioning accuracy. In this study, I considered the factors of ranging error in the FTM protocol in practical indoor environment, and proposed a method to compensate ranging error. I designed an EKF-based tracking algorithm that adaptively removes outliers from the FTM result and corrects bias to increase positioning accuracy. The experimental results verified that the proposed algorithm reduces the average ofthe ranging bias by 43-65\% in an indoor scenarios, and can achieve the sub-meter accuracy in average route mean squared error of user's position in the experiment scenarios.Abstract i Contents iv List of Tables vi List of Figures vii 1 INTRODUCTION 1 2 Hybrid Approach for Indoor Localization Using Received Signal Strength of Dual-BandWi-Fi 6 2.1 Motivation 6 2.2 Preliminary 8 2.3 System model 11 2.4 Proposed Ranging Method 13 2.5 Performance Evaluation 16 2.5.1 Ray-Tracing-Based Simulation 16 2.5.2 Analysis of the Ranging Accuracy 21 2.5.3 Analysis of the Neural Network Structure 25 2.5.4 Analysis of Positioning Accuracy 26 2.6 Summary 29 3 Genetic Algorithm for Path Loss Model Selection in Signal Strength Based Indoor Localization 31 3.1 Motivation 31 3.2 Preliminary 34 3.2.1 RSS-based Ranging Techniques 35 3.2.2 Positioning Technique 37 3.3 Proposed localization method 38 3.3.1 Localization Algorithm with Overlapped Multi-State Path Loss Model 38 3.3.2 Localization with Genetic Algorithm-Based Search 41 3.4 Performance evaluation 46 3.4.1 Numerical simulation 50 3.4.2 Experimental results 56 3.5 Summary 60 4 Indoor User Tracking with Self-calibrating Range Bias Using FTM Protocol 62 4.1 Motivation 62 4.2 Preliminary 63 4.2.1 FTM ranging 63 4.2.2 PDR-based trajectory estimation 65 4.3 EKF design for adaptive compensation of ranging bias 66 4.4 Performance evaluation 69 4.4.1 Experimental scenario 69 4.4.2 Experimental results 70 4.5 Summary 75 5 Conclusion 76 Abstract (In Korean) 89박

    Recent Advances in Indoor Localization Systems and Technologies

    Get PDF
    Despite the enormous technical progress seen in the past few years, the maturity of indoor localization technologies has not yet reached the level of GNSS solutions. The 23 selected papers in this book present the recent advances and new developments in indoor localization systems and technologies, propose novel or improved methods with increased performance, provide insight into various aspects of quality control, and also introduce some unorthodox positioning methods

    Low-Cost Indoor Localisation Based on Inertial Sensors, Wi-Fi and Sound

    Get PDF
    The average life expectancy has been increasing in the last decades, creating the need for new technologies to improve the quality of life of the elderly. In the Ambient Assisted Living scope, indoor location systems emerged as a promising technology capable of sup porting the elderly, providing them a safer environment to live in, and promoting their autonomy. Current indoor location technologies are divided into two categories, depend ing on their need for additional infrastructure. Infrastructure-based solutions require expensive deployment and maintenance. On the other hand, most infrastructure-free systems rely on a single source of information, being highly dependent on its availability. Such systems will hardly be deployed in real-life scenarios, as they cannot handle the absence of their source of information. An efficient solution must, thus, guarantee the continuous indoor positioning of the elderly. This work proposes a new room-level low-cost indoor location algorithm. It relies on three information sources: inertial sensors, to reconstruct users’ trajectories; environ mental sound, to exploit the unique characteristics of each home division; and Wi-Fi, to estimate the distance to the Access Point in the neighbourhood. Two data collection protocols were designed to resemble a real living scenario, and a data processing stage was applied to the collected data. Then, each source was used to train individual Ma chine Learning (including Deep Learning) algorithms to identify room-level positions. As each source provides different information to the classification, the data were merged to produce a more robust localization. Three data fusion approaches (input-level, early, and late fusion) were implemented for this goal, providing a final output containing complementary contributions from all data sources. Experimental results show that the performance improved when more than one source was used, attaining a weighted F1-score of 81.8% in the localization between seven home divisions. In conclusion, the evaluation of the developed algorithm shows that it can achieve accurate room-level indoor localization, being, thus, suitable to be applied in Ambient Assisted Living scenarios.O aumento da esperança média de vida nas últimas décadas, criou a necessidade de desenvolvimento de tecnologias que permitam melhorar a qualidade de vida dos idosos. No âmbito da Assistência à Autonomia no Domicílio, sistemas de localização indoor têm emergido como uma tecnologia promissora capaz de acompanhar os idosos e as suas atividades, proporcionando-lhes um ambiente seguro e promovendo a sua autonomia. As tecnologias de localização indoor atuais podem ser divididas em duas categorias, aquelas que necessitam de infrastruturas adicionais e aquelas que não. Sistemas dependentes de infrastrutura necessitam de implementação e manutenção que são muitas vezes dispendiosas. Por outro lado, a maioria das soluções que não requerem infrastrutura, dependem de apenas uma fonte de informação, sendo crucial a sua disponibilidade. Um sistema que não consegue lidar com a falta de informação de um sensor dificilmente será implementado em cenários reais. Uma solução eficiente deverá assim garantir o acompanhamento contínuo dos idosos. A solução proposta consiste no desenvolvimento de um algoritmo de localização indoor de baixo custo, baseando-se nas seguintes fontes de informação: sensores inerciais, capazes de reconstruir a trajetória do utilizador; som, explorando as características dis tintas de cada divisão da casa; e Wi-Fi, responsável pela estimativa da distância entre o ponto de acesso e o smartphone. Cada fonte sensorial, extraída dos sensores incorpora dos no dispositivo, foi, numa primeira abordagem, individualmente otimizada através de algoritmos de Machine Learning (incluindo Deep Learning). Como os dados das diversas fontes contêm informação diferente acerca das mesmas características do sistema, a sua fusão torna a classificação mais informada e robusta. Com este objetivo, foram implementadas três abordagens de fusão de dados (input data, early and late fusion), fornecendo um resultado final derivado de contribuições complementares de todas as fontes de dados. Os resultados experimentais mostram que o desempenho do algoritmo desenvolvido melhorou com a inclusão de informação multi-sensor, alcançando um valor para F1- score de 81.8% na distinção entre sete divisões domésticas. Concluindo, o algoritmo de localização indoor, combinando informações de três fontes diferentes através de métodos de fusão de dados, alcançou uma localização room-level e está apto para ser aplicado num cenário de Assistência à Autonomia no Domicílio

    Bio-inspired algorithm for decisioning wireless access point installation

    Get PDF
    This paper presents the bio-inspired algorithms for decisioning wireless access point (AP) installation. In order to achieve the desired coverage capability of APs, the bio-inspired algorithms are applied for robust competition and optimization. The main objective is to determine the optimal number of APs with the high coverage capability in the concerning area using the genetic and ant colony optimization algorithms. Received signal strength indicator (RSSI) and line-of-sight (LoS) gradient approach are the most important parameters for AP installation depending on the AP signal strength. Practical experiments are tested on the embedded system using Xilinx Kria KR260 and Raspberry Pi Zero 2W boards at the tested room size about 16 m wide and 40 m long inside the building. Xilinx Kria KR260 board is used to calculate the number of AP installation and localization compared to Xcode. Then, Raspberry Pi Zero 2W board is the representation of wireless AP for measuring the signal in the testing area. Experiment results show that maximum received signals strength is equal to -35 dBm at 6 m and there are six APs installation with high coverage area and maximum received signal strength at the area of 16×40 m2

    Smartphone-Based Activity Recognition in a Pedestrian Navigation Context

    Get PDF
    In smartphone-based pedestrian navigation systems, detailed knowledge about user activity and device placement is a key information. Landmarks such as staircases or elevators can help the system in determining the user position when located inside buildings, and navigation instructions can be adapted to the current context in order to provide more meaningful assistance. Typically, most human activity recognition (HAR) approaches distinguish between general activities such as walking, standing or sitting. In this work, we investigate more specific activities that are tailored towards the use-case of pedestrian navigation, including different kinds of stationary and locomotion behavior. We first collect a dataset of 28 combinations of device placements and activities, in total consisting of over 6 h of data from three sensors. We then use LSTM-based machine learning (ML) methods to successfully train hierarchical classifiers that can distinguish between these placements and activities. Test results show that the accuracy of device placement classification (97.2%) is on par with a state-of-the-art benchmark in this dataset while being less resource-intensive on mobile devices. Activity recognition performance highly depends on the classification task and ranges from 62.6% to 98.7%, once again performing close to the benchmark. Finally, we demonstrate in a case study how to apply the hierarchical classifiers to experimental and naturalistic datasets in order to analyze activity patterns during the course of a typical navigation session and to investigate the correlation between user activity and device placement, thereby gaining insights into real-world navigation behavior
    corecore