309 research outputs found

    Improved situation awareness for autonomous taxiing through self-learning

    Get PDF
    As unmanned aerial vehicles (UAVs) become widely used in various civil applications, many civil aerodromes are being transformed into a hybrid environment for both manned and unmanned aircraft. In order to make these hybrid aerodromes operate safely and efficiently, the autonomous taxiing system of UAVs that adapts to the dynamic environment has now become increasingly important, particularly under poor visibility conditions. In this paper, we develop a probabilistic self-learning approach for the situation awareness of UAVs’ autonomous taxiing. First, the probabilistic representation for a dynamic navigation map and camera images are developed at the pixel level to capture the taxiway markings and the other objects of interest (e.g., logistic vehicles and other aircraft). Then we develop a self-learning approach so that the navigation map can be maintained online by continuously map-updating with the obtained camera observations via Bayesian learning. Indoor experiment was undertaken to evaluate the developed self-learning method for improved situation awareness. It shows that the developed approach is capable of improving the robustness of obstacle detection via updating the navigation map dynamically

    Aerodrome situational awareness of unmanned aircraft: an integrated self-learning approach with Bayesian network semantic segmentation

    Get PDF
    It is expected that soon there will be a significant number of unmanned aerial vehicles (UAVs) operating side-by-side with manned civil aircraft in national airspace systems. To be able to integrate UAVs safely with civil traffic, a number of challenges must be overcome first. This paper investigates situational awareness of UAVs’ autonomous taxiing in an aerodrome environment. The research work is based on a real outdoor experimental data collected at the Walney Island Airport, the United Kingdom. It aims to further develop and test UAVs’ autonomous taxiing in a challenging outdoor environment. To address various practical issues arising from the outdoor aerodrome such as camera vibration, taxiway feature extraction and unknown obstacles, we develop an integrated approach that combines the Bayesian-network based semantic segmentation with a self-learning method to enhance situational awareness of UAVs. Detailed analysis for the outdoor experimental data shows that the integrated method developed in this paper improves robustness of situational awareness for autonomous taxiing

    Automated taxiing for unmanned aircraft systems

    Get PDF
    Over the last few years, the concept of civil Unmanned Aircraft System(s) (UAS) has been realised, with small UASs commonly used in industries such as law enforcement, agriculture and mapping. With increased development in other areas, such as logistics and advertisement, the size and range of civil UAS is likely to grow. Taken to the logical conclusion, it is likely that large scale UAS will be operating in civil airspace within the next decade. Although the airborne operations of civil UAS have already gathered much research attention, work is also required to determine how UAS will function when on the ground. Motivated by the assumption that large UAS will share ground facilities with manned aircraft, this thesis describes the preliminary development of an Automated Taxiing System(ATS) for UAS operating at civil aerodromes. To allow the ATS to function on the majority of UAS without the need for additional hardware, a visual sensing approach has been chosen, with the majority of work focusing on monocular image processing techniques. The purpose of the computer vision system is to provide direct sensor data which can be used to validate the vehicle s position, in addition to detecting potential collision risks. As aerospace regulations require the most robust and reliable algorithms for control, any methods which are not fully definable or explainable will not be suitable for real-world use. Therefore, non-deterministic methods and algorithms with hidden components (such as Artificial Neural Network (ANN)) have not been used. Instead, the visual sensing is achieved through a semantic segmentation, with separate segmentation and classification stages. Segmentation is performed using superpixels and reachability clustering to divide the image into single content clusters. Each cluster is then classified using multiple types of image data, probabilistically fused within a Bayesian network. The data set for testing has been provided by BAE Systems, allowing the system to be trained and tested on real-world aerodrome data. The system has demonstrated good performance on this limited dataset, accurately detecting both collision risks and terrain features for use in navigation

    3D-in-2D Displays for ATC.

    Get PDF
    This paper reports on the efforts and accomplishments of the 3D-in-2D Displays for ATC project at the end of Year 1. We describe the invention of 10 novel 3D/2D visualisations that were mostly implemented in the Augmented Reality ARToolkit. These prototype implementations of visualisation and interaction elements can be viewed on the accompanying video. We have identified six candidate design concepts which we will further research and develop. These designs correspond with the early feasibility studies stage of maturity as defined by the NASA Technology Readiness Level framework. We developed the Combination Display Framework from a review of the literature, and used it for analysing display designs in terms of display technique used and how they are combined. The insights we gained from this framework then guided our inventions and the human-centered innovation process we use to iteratively invent. Our designs are based on an understanding of user work practices. We also developed a simple ATC simulator that we used for rapid experimentation and evaluation of design ideas. We expect that if this project continues, the effort in Year 2 and 3 will be focus on maturing the concepts and employment in a operational laboratory settings

    Considerations in Assuring Safety of Increasingly Autonomous Systems

    Get PDF
    Recent technological advances have accelerated the development and application of increasingly autonomous (IA) systems in civil and military aviation. IA systems can provide automation of complex mission tasks-ranging across reduced crew operations, air-traffic management, and unmanned, autonomous aircraft-with most applications calling for collaboration and teaming among humans and IA agents. IA systems are expected to provide benefits in terms of safety, reliability, efficiency, affordability, and previously unattainable mission capability. There is also a potential for improving safety by removal of human errors. There are, however, several challenges in the safety assurance of these systems due to the highly adaptive and non-deterministic behavior of these systems, and vulnerabilities due to potential divergence of airplane state awareness between the IA system and humans. These systems must deal with external sensors and actuators, and they must respond in time commensurate with the activities of the system in its environment. One of the main challenges is that safety assurance, currently relying upon authority transfer from an autonomous function to a human to mitigate safety concerns, will need to address their mitigation by automation in a collaborative dynamic context. These challenges have a fundamental, multidimensional impact on the safety assurance methods, system architecture, and V&V capabilities to be employed. The goal of this report is to identify relevant issues to be addressed in these areas, the potential gaps in the current safety assurance techniques, and critical questions that would need to be answered to assure safety of IA systems. We focus on a scenario of reduced crew operation when an IA system is employed which reduces, changes or eliminates a human's role in transition from two-pilot operations

    Planning and reconfigurable control of a fleet of unmanned vehicles for taxi operations in airport environment

    Get PDF
    The optimization of airport operations has gained increasing interest by the aeronautical community, due to the substantial growth in the number of airport movements (landings and take-offs) experienced in the past decades all over the world. Forecasts have confirmed this trend also for the next decades. The result of the expansion of air traffic is an increasing congestion of airports, especially in taxiways and runways, leading to additional amount of fuel burnt by airplanes during taxi operations, causing additional pollution and costs for airlines. In order to reduce the impact of taxi operations, different solutions have been proposed in literature; the solution which this dissertation refers to uses autonomous electric vehicles to tow airplanes between parking lots and runways. Although several analyses have been proposed in literature, showing the feasibility and the effectiveness of this approach in reducing the environmental impact, at the beginning of the doctoral activity no solutions were proposed, on how to manage the fleet of unmanned vehicles inside the airport environment. Therefore, the research activity has focused on the development of algorithms able to provide pushback tractor (also referred as tugs) autopilots with conflict-free schedules. The main objective of the optimization algorithms is to minimize the tug energy consumption, while performing just-in-time runway operations: departing airplanes are delivered only when they can take-off and the taxi-in phase starts as soon as the aircraft clears the runway and connects to the tractor. Two models, one based on continuous time and one on discrete time evolution, were developed to simulate the taxi phases within the optimization scheme. A piecewise-linear model has also been proposed to evaluate the energy consumed by the tugs during the assigned missions. Furthermore, three optimization algorithms were developed: two hybrid versions of the particle swarm optimization and a tree search heuristic. The following functional requirements for the management algorithm were defined: the optimization model must be easily adapted to different airports with different layout (reconfigurability); the generated schedule must always be conflict-free; and the computational time required to process a time horizon of 1h must be less than 15min. In order to improve its performance, the particle swarm optimization was hybridized with a hill-climb meta-heuristic; a second hybridization was performed by means of the random variable search, an algorithm of the family of the variable neighborhood search. The neighborhood size for the random variable search was considered varying with inverse proportionality to the distance between the actual considered solution and the optimal one found so far. Finally, a tree search heuristic was developed to find the runway sequence, among all the possible sequences of take-offs and landings for a given flight schedule, which can be realized with a series of taxi trajectories that require minimum energy consumption. Given the taxi schedule generated by the aforementioned optimization algorithms a tug dispatch algorithm, assigns a vehicle to each mission. The three optimization schemes and the two mathematical models were tested on several test cases among three airports: the Turin-Caselle airport, the Milan-Malpensa airport, and the Amsterdam airport Schiphol. The cost required to perform the generated schedules using the autonomous tugs was compared to the cost required to perform the taxi using the aircraft engines. The proposed approach resulted always more convenient than the classical one

    Acta Polytechnica Hungarica 2021

    Get PDF

    Substandard flight crew performance: recurrent human factors in flight crew initiated aircraft incidents and accidents

    Get PDF
    The objective of this research has been to understand more about aviation accidents in which the actions of the flight crew members (hereafter FCMs) were the main cause. A new con-struct has been developed known as substandard flight crew performance (hereafter SFP) to provide framework and context for this research. To support this construct, the most recurrent examples of SFP were identified from analysis of decades of investigations and reports. Based upon the frequency of occurrence, the potential contribution to aviation safety, and the feasibility of conducting meaningful research, three diverse but interconnected factors have been identified. The first of these related to the recurrent influence of verbal phenomena in aviation accidents, in particular, distracting conversations and unclear communications. [Continues.
    • …
    corecore