5,559 research outputs found

    Tree-based Intelligent Intrusion Detection System in Internet of Vehicles

    Full text link
    The use of autonomous vehicles (AVs) is a promising technology in Intelligent Transportation Systems (ITSs) to improve safety and driving efficiency. Vehicle-to-everything (V2X) technology enables communication among vehicles and other infrastructures. However, AVs and Internet of Vehicles (IoV) are vulnerable to different types of cyber-attacks such as denial of service, spoofing, and sniffing attacks. In this paper, an intelligent intrusion detection system (IDS) is proposed based on tree-structure machine learning models. The results from the implementation of the proposed intrusion detection system on standard data sets indicate that the system has the ability to identify various cyber-attacks in the AV networks. Furthermore, the proposed ensemble learning and feature selection approaches enable the proposed system to achieve high detection rate and low computational cost simultaneously.Comment: Accepted in IEEE Global Communications Conference (GLOBECOM) 201

    PhishDef: URL Names Say It All

    Full text link
    Phishing is an increasingly sophisticated method to steal personal user information using sites that pretend to be legitimate. In this paper, we take the following steps to identify phishing URLs. First, we carefully select lexical features of the URLs that are resistant to obfuscation techniques used by attackers. Second, we evaluate the classification accuracy when using only lexical features, both automatically and hand-selected, vs. when using additional features. We show that lexical features are sufficient for all practical purposes. Third, we thoroughly compare several classification algorithms, and we propose to use an online method (AROW) that is able to overcome noisy training data. Based on the insights gained from our analysis, we propose PhishDef, a phishing detection system that uses only URL names and combines the above three elements. PhishDef is a highly accurate method (when compared to state-of-the-art approaches over real datasets), lightweight (thus appropriate for online and client-side deployment), proactive (based on online classification rather than blacklists), and resilient to training data inaccuracies (thus enabling the use of large noisy training data).Comment: 9 pages, submitted to IEEE INFOCOM 201

    Hacking Smart Machines with Smarter Ones: How to Extract Meaningful Data from Machine Learning Classifiers

    Full text link
    Machine Learning (ML) algorithms are used to train computers to perform a variety of complex tasks and improve with experience. Computers learn how to recognize patterns, make unintended decisions, or react to a dynamic environment. Certain trained machines may be more effective than others because they are based on more suitable ML algorithms or because they were trained through superior training sets. Although ML algorithms are known and publicly released, training sets may not be reasonably ascertainable and, indeed, may be guarded as trade secrets. While much research has been performed about the privacy of the elements of training sets, in this paper we focus our attention on ML classifiers and on the statistical information that can be unconsciously or maliciously revealed from them. We show that it is possible to infer unexpected but useful information from ML classifiers. In particular, we build a novel meta-classifier and train it to hack other classifiers, obtaining meaningful information about their training sets. This kind of information leakage can be exploited, for example, by a vendor to build more effective classifiers or to simply acquire trade secrets from a competitor's apparatus, potentially violating its intellectual property rights
    • …
    corecore