6,398 research outputs found

    Global Cardinality Constraints Make Approximating Some Max-2-CSPs Harder

    Get PDF
    Assuming the Unique Games Conjecture, we show that existing approximation algorithms for some Boolean Max-2-CSPs with cardinality constraints are optimal. In particular, we prove that Max-Cut with cardinality constraints is UG-hard to approximate within ~~0.858, and that Max-2-Sat with cardinality constraints is UG-hard to approximate within ~~0.929. In both cases, the previous best hardness results were the same as the hardness of the corresponding unconstrained Max-2-CSP (~~0.878 for Max-Cut, and ~~0.940 for Max-2-Sat). The hardness for Max-2-Sat applies to monotone Max-2-Sat instances, meaning that we also obtain tight inapproximability for the Max-k-Vertex-Cover problem

    Sticky Brownian Rounding and its Applications to Constraint Satisfaction Problems

    Get PDF
    Semidefinite programming is a powerful tool in the design and analysis of approximation algorithms for combinatorial optimization problems. In particular, the random hyperplane rounding method of Goemans and Williamson has been extensively studied for more than two decades, resulting in various extensions to the original technique and beautiful algorithms for a wide range of applications. Despite the fact that this approach yields tight approximation guarantees for some problems, e.g., Max-Cut, for many others, e.g., Max-SAT and Max-DiCut, the tight approximation ratio is still unknown. One of the main reasons for this is the fact that very few techniques for rounding semidefinite relaxations are known. In this work, we present a new general and simple method for rounding semi-definite programs, based on Brownian motion. Our approach is inspired by recent results in algorithmic discrepancy theory. We develop and present tools for analyzing our new rounding algorithms, utilizing mathematical machinery from the theory of Brownian motion, complex analysis, and partial differential equations. Focusing on constraint satisfaction problems, we apply our method to several classical problems, including Max-Cut, Max-2SAT, and MaxDiCut, and derive new algorithms that are competitive with the best known results. To illustrate the versatility and general applicability of our approach, we give new approximation algorithms for the Max-Cut problem with side constraints that crucially utilizes measure concentration results for the Sticky Brownian Motion, a feature missing from hyperplane rounding and its generalization

    The parallel approximability of a subclass of quadratic programming

    Get PDF
    In this paper we deal with the parallel approximability of a special class of Quadratic Programming (QP), called Smooth Positive Quadratic Programming. This subclass of QP is obtained by imposing restrictions on the coefficients of the QP instance. The Smoothness condition restricts the magnitudes of the coefficients while the positiveness requires that all the coefficients be non-negative. Interestingly, even with these restrictions several combinatorial problems can be modeled by Smooth QP. We show NC Approximation Schemes for the instances of Smooth Positive QP. This is done by reducing the instance of QP to an instance of Positive Linear Programming, finding in NC an approximate fractional solution to the obtained program, and then rounding the fractional solution to an integer approximate solution for the original problem. Then we show how to extend the result for positive instances of bounded degree to Smooth Integer Programming problems. Finally, we formulate several important combinatorial problems as Positive Quadratic Programs (or Positive Integer Programs) in packing/covering form and show that the techniques presented can be used to obtain NC Approximation Schemes for "dense" instances of such problems.Peer ReviewedPostprint (published version

    Explicit Optimal Hardness via Gaussian stability results

    Get PDF
    The results of Raghavendra (2008) show that assuming Khot's Unique Games Conjecture (2002), for every constraint satisfaction problem there exists a generic semi-definite program that achieves the optimal approximation factor. This result is existential as it does not provide an explicit optimal rounding procedure nor does it allow to calculate exactly the Unique Games hardness of the problem. Obtaining an explicit optimal approximation scheme and the corresponding approximation factor is a difficult challenge for each specific approximation problem. An approach for determining the exact approximation factor and the corresponding optimal rounding was established in the analysis of MAX-CUT (KKMO 2004) and the use of the Invariance Principle (MOO 2005). However, this approach crucially relies on results explicitly proving optimal partitions in Gaussian space. Until recently, Borell's result (Borell 1985) was the only non-trivial Gaussian partition result known. In this paper we derive the first explicit optimal approximation algorithm and the corresponding approximation factor using a new result on Gaussian partitions due to Isaksson and Mossel (2012). This Gaussian result allows us to determine exactly the Unique Games Hardness of MAX-3-EQUAL. In particular, our results show that Zwick algorithm for this problem achieves the optimal approximation factor and prove that the approximation achieved by the algorithm is 0.796\approx 0.796 as conjectured by Zwick. We further use the previously known optimal Gaussian partitions results to obtain a new Unique Games Hardness factor for MAX-k-CSP : Using the well known fact that jointly normal pairwise independent random variables are fully independent, we show that the the UGC hardness of Max-k-CSP is (k+1)/22k1\frac{\lceil (k+1)/2 \rceil}{2^{k-1}}, improving on results of Austrin and Mossel (2009)

    On the Approximability of Digraph Ordering

    Full text link
    Given an n-vertex digraph D = (V, A) the Max-k-Ordering problem is to compute a labeling :V[k]\ell : V \to [k] maximizing the number of forward edges, i.e. edges (u,v) such that \ell(u) < \ell(v). For different values of k, this reduces to Maximum Acyclic Subgraph (k=n), and Max-Dicut (k=2). This work studies the approximability of Max-k-Ordering and its generalizations, motivated by their applications to job scheduling with soft precedence constraints. We give an LP rounding based 2-approximation algorithm for Max-k-Ordering for any k={2,..., n}, improving on the known 2k/(k-1)-approximation obtained via random assignment. The tightness of this rounding is shown by proving that for any k={2,..., n} and constant ε>0\varepsilon > 0, Max-k-Ordering has an LP integrality gap of 2 - ε\varepsilon for nΩ(1/loglogk)n^{\Omega\left(1/\log\log k\right)} rounds of the Sherali-Adams hierarchy. A further generalization of Max-k-Ordering is the restricted maximum acyclic subgraph problem or RMAS, where each vertex v has a finite set of allowable labels SvZ+S_v \subseteq \mathbb{Z}^+. We prove an LP rounding based 42/(2+1)2.3444\sqrt{2}/(\sqrt{2}+1) \approx 2.344 approximation for it, improving on the 222.8282\sqrt{2} \approx 2.828 approximation recently given by Grandoni et al. (Information Processing Letters, Vol. 115(2), Pages 182-185, 2015). In fact, our approximation algorithm also works for a general version where the objective counts the edges which go forward by at least a positive offset specific to each edge. The minimization formulation of digraph ordering is DAG edge deletion or DED(k), which requires deleting the minimum number of edges from an n-vertex directed acyclic graph (DAG) to remove all paths of length k. We show that both, the LP relaxation and a local ratio approach for DED(k) yield k-approximation for any k[n]k\in [n].Comment: 21 pages, Conference version to appear in ESA 201

    Optimal Constant-Time Approximation Algorithms and (Unconditional) Inapproximability Results for Every Bounded-Degree CSP

    Full text link
    Raghavendra (STOC 2008) gave an elegant and surprising result: if Khot's Unique Games Conjecture (STOC 2002) is true, then for every constraint satisfaction problem (CSP), the best approximation ratio is attained by a certain simple semidefinite programming and a rounding scheme for it. In this paper, we show that similar results hold for constant-time approximation algorithms in the bounded-degree model. Specifically, we present the followings: (i) For every CSP, we construct an oracle that serves an access, in constant time, to a nearly optimal solution to a basic LP relaxation of the CSP. (ii) Using the oracle, we give a constant-time rounding scheme that achieves an approximation ratio coincident with the integrality gap of the basic LP. (iii) Finally, we give a generic conversion from integrality gaps of basic LPs to hardness results. All of those results are \textit{unconditional}. Therefore, for every bounded-degree CSP, we give the best constant-time approximation algorithm among all. A CSP instance is called ϵ\epsilon-far from satisfiability if we must remove at least an ϵ\epsilon-fraction of constraints to make it satisfiable. A CSP is called testable if there is a constant-time algorithm that distinguishes satisfiable instances from ϵ\epsilon-far instances with probability at least 2/32/3. Using the results above, we also derive, under a technical assumption, an equivalent condition under which a CSP is testable in the bounded-degree model

    Rounding Sum-of-Squares Relaxations

    Get PDF
    We present a general approach to rounding semidefinite programming relaxations obtained by the Sum-of-Squares method (Lasserre hierarchy). Our approach is based on using the connection between these relaxations and the Sum-of-Squares proof system to transform a *combining algorithm* -- an algorithm that maps a distribution over solutions into a (possibly weaker) solution -- into a *rounding algorithm* that maps a solution of the relaxation to a solution of the original problem. Using this approach, we obtain algorithms that yield improved results for natural variants of three well-known problems: 1) We give a quasipolynomial-time algorithm that approximates the maximum of a low degree multivariate polynomial with non-negative coefficients over the Euclidean unit sphere. Beyond being of interest in its own right, this is related to an open question in quantum information theory, and our techniques have already led to improved results in this area (Brand\~{a}o and Harrow, STOC '13). 2) We give a polynomial-time algorithm that, given a d dimensional subspace of R^n that (almost) contains the characteristic function of a set of size n/k, finds a vector vv in the subspace satisfying v44>c(k/d1/3)v22|v|_4^4 > c(k/d^{1/3}) |v|_2^2, where vp=(Eivip)1/p|v|_p = (E_i v_i^p)^{1/p}. Aside from being a natural relaxation, this is also motivated by a connection to the Small Set Expansion problem shown by Barak et al. (STOC 2012) and our results yield a certain improvement for that problem. 3) We use this notion of L_4 vs. L_2 sparsity to obtain a polynomial-time algorithm with substantially improved guarantees for recovering a planted μ\mu-sparse vector v in a random d-dimensional subspace of R^n. If v has mu n nonzero coordinates, we can recover it with high probability whenever μ<O(min(1,n/d2))\mu < O(\min(1,n/d^2)), improving for d<n2/3d < n^{2/3} prior methods which intrinsically required μ<O(1/(d))\mu < O(1/\sqrt(d))
    corecore