157 research outputs found

    Control and Stability of Residential Microgrid with Grid-Forming Prosumers

    Get PDF
    The rise of the prosumers (producers-consumers), residential customers equipped with behind-the-meter distributed energy resources (DER), such as battery storage and rooftop solar PV, offers an opportunity to use prosumer-owned DER innovatively. The thesis rests on the premise that prosumers equipped with grid-forming inverters can not only provide inertia to improve the frequency performance of the bulk grid but also support islanded operation of residential microgrids (low-voltage distribution feeder operated in an islanded mode), which can improve distribution grids’ resilience and reliability without purposely designing low-voltage (LV) distribution feeders as microgrids. Today, grid-following control is predominantly used to control prosumer DER, by which the prosumers behave as controlled current sources. These grid-following prosumers deliver active and reactive power by staying synchronized with the existing grid. However, they cannot operate if disconnected from the main grid due to the lack of voltage reference. This gives rise to the increasing interest in the use of grid-forming power converters, by which the prosumers behave as voltage sources. Grid-forming converters regulate their output voltage according to the reference of their own and exhibit load sharing with other prosumers even in islanded operation. Making use of grid-forming prosumers opens up opportunities to improve distribution grids’ resilience and enhance the genuine inertia of highly renewable-penetrated power systems. Firstly, electricity networks in many regional communities are prone to frequent power outages. Instead of purposely designing the community as a microgrid with dedicated grid-forming equipment, the LV feeder can be turned into a residential microgrid with multiple paralleled grid-forming prosumers. In this case, the LV feeder can operate in both grid-connected and islanded modes. Secondly, gridforming prosumers in the residential microgrid behave as voltage sources that respond naturally to the varying loads in the system. This is much like synchronous machines extracting kinetic energy from rotating masses. “Genuine” system inertia is thus enhanced, which is fundamentally different from the “emulated” inertia by fast frequency response (FFR) from grid-following converters. Against this backdrop, this thesis mainly focuses on two aspects. The first is the small-signal stability of such residential microgrids. In particular, the impact of the increasing number of grid-forming prosumers is studied based on the linearised model. The impact of the various dynamic response of primary sources is also investigated. The second is the control of the grid-forming prosumers aiming to provide sufficient inertia for the system. The control is focused on both the inverters and the DC-stage converters. Specifically, the thesis proposes an advanced controller for the DC-stage converters based on active disturbance rejection control (ADRC), which observes and rejects the “total disturbance” of the system, thereby enhancing the inertial response provided by prosumer DER. In addition, to make better use of the energy from prosumer-owned DER, an adaptive droop controller based on a piecewise power function is proposed, which ensures that residential ESS provide little power in the steady state while supplying sufficient power to cater for the demand variation during the transient state. Proposed strategies are verified by time-domain simulations

    Stabilised Control of Converter Interfaced DERs for Reliable Operation of Microgrid and Microgrid Clusters

    Get PDF
    This thesis aims to achieve a stabilised control of converter interfaced DER for the reliable and resilient operation of microgrid and microgrid clusters. The suitability of voltage and current control for VSCs is evaluated and corrective measures are proposed to stabilise converter operation. Furthermore, the accurate power demand distribution in islanded MGs and interconnected MGs are ensured by advanced control strategies. The proposal presented in the thesis is verified both through simulation and experimental work

    Distributed power quality improvement in residential microgrids

    Get PDF
    The importance of power quality issue on micro grids and also the changing nature of power system distortions will lead the future power systems to use distributed power quality improvement (DPQI) devices. One possible choice of these DPQIs are multifunctional DGs that could compensate some harmonics in the location of generation and prevent the harmonics to enter main power grid. In this paper a control method based on virtual harmonic impedance is presented for these multifunctional DGs and the effect of the location of these DGs on compensation procedure is studied with simulating the different situations. Finally a comparison is presented between different states of using DGs as PQI devices. To verify the feasibility of the control method a comparison is done between the presented method results and IEEE power quality standard limits

    Modelling, Control and Integration of Distributed Generators for Enhanced Ancillary Services

    Get PDF

    Development of community grid: review of technical issues and challenges

    Get PDF
    The concept of a community grid is presented here. It involves the distribution grid and an increased use of renewable energy coming from distributed resources along with the consumers/prosumers engagement in energy trading mechanism. The possible operation and management with energy trading flexibility are briefly outlined. Under such scenario, the classical operation of the distribution grid is challenged by the issues brought by the large penetration level of the new energy resources. This paper presents a status review of the technical issues that may appear under the community grid scenario. Building upon those surveyed issues, this work also reviews and discusses approaches to solutions, which are required in order to make the community grid highly renewable and sustainable

    Novel Control Strategies for Parallel-Connected Inverters in AC Microgrids

    Get PDF
    corecore