727 research outputs found

    Related-Key Rectangle Attack of the Full 80-Round HAS-160 Encryption Mode

    Get PDF
    In this paper we investigate the security of the encryption mode of the HAS-160 hash function. HAS-160 is a Korean hash standard which is widely used in Korea\u27s industry. The structure of HAS-160 is similar to SHA-1 but includes some improvements. The encryption mode of HAS-160 is defined similarly as the encryption mode of SHA-1 that is called SHACAL-1. In 2006, Dunkelman et. al. successfully broke the full 80-round SHACAL-1. In this paper, we present the first cryptographic attack that breaks the encryption mode of the full 80-round HAS-160. SHACAL-1 and the encryption mode of HAS-160 are both blockciphers with key size 512 bits and plain-/ciphertext size of 160 bits. We will apply a key recovery attack that needs about 2^{155} chosen plaintexts and 2^{375.98} 80-round HAS-160 encryptions. The attack does not aim for a collision, preimage or 2nd-preimage attack, but it shows that HAS-160 used as a block cipher can be differentiated from an ideal cipher faster than exhaustive search

    Cryptanalysis and Design of Symmetric Primitives

    Get PDF
    Der Schwerpunkt dieser Dissertation liegt in der Analyse und dem Design von Block- chiffren und Hashfunktionen. Die Arbeit beginnt mit einer Einführung in Techniken zur Kryptoanalyse von Blockchiffren. Wir beschreiben diese Methoden und zeigen wie man daraus neue Techniken entwickeln kann, welche zu staerkeren Angriffen fuehren. Im zweiten Teil der Arbeit stellen wir eine Reihe von Angriffen auf eine Vielzahl von Blockchiffren dar. Wir haben dabei Angriffe auf reduzierte Versionen von ARIA und dem AES entwickelt. Darueber hinaus praesentieren wir im dritten Teil Angriffe auf interne Blockchiffren von Hashfunktionen. Wir entwickeln Angriffe, welche die inter- nen Blockchiffren von Tiger und HAS-160 auf volle Rundenanzahl brechen. Die hier vorgestellten Angriffe sind die ersten dieser Art. Ein Angriff auf eine reduzierte Ver- sion von SHACAL-2 welcher fast keinen Speicherbedarf hat, wird ebenfalls vorgestellt. Der vierte Teil der Arbeit befasst sich mit den Design und der Analyse von kryp- tographischen Hashfunktionen. Wir habe einen Slide Angriff, eine Technik welche aus der Analyse von Blockchiffren bekannt ist, im Kontext von Hashfunktionen zur Anwendung gebracht. Dabei praesentieren wir verschiedene Angriffe auf GRINDAHL und RADIOGATUN. Aufbauend auf den Angriffen des zweiten und dritten Teils dieser Arbeit stellen wir eine neue Hashfunktion vor, welche wir TWISTER nennen. TWISTER wurde fuer den SHA-3 Wettbewerb entwickelt und ist bereits zur ersten Runde angenommen.This thesis focuses on the cryptanalysis and the design of block ciphers and hash func- tions. The thesis starts with an overview of methods for cryptanalysis of block ciphers which are based on differential cryptanalysis. We explain these concepts and also sev- eral combinations of these attacks. We propose new attacks on reduced versions of ARIA and AES. Furthermore, we analyze the strength of the internal block ciphers of hash functions. We propose the first attacks that break the internal block ciphers of Tiger, HAS-160, and a reduced round version of SHACAL-2. The last part of the thesis is concerned with the analysis and the design of cryptographic hash functions. We adopt a block cipher attack called slide attack into the scenario of hash function cryptanalysis. We then use this new method to attack different variants of GRINDAHL and RADIOGATUN. Finally, we propose a new hash function called TWISTER which was designed and pro- posed for the SHA-3 competition. TWISTER was accepted for round one of this com- petition. Our approach follows a new strategy to design a cryptographic hash function. We also describe several attacks on TWISTER and discuss the security issues concern- ing these attack on TWISTER

    Analysis of Boomerang Differential Trails via a SAT-Based Constraint Solver URSA

    Get PDF
    In order to obtain differential patterns over many rounds of a cryptographic primitive, the cryptanalyst often needs to work on local differential trail analysis. Examples include merging two differential trail parts into one or, in the case of boomerang and rectangle attacks, connecting two short trails within the quartet boomerang setting. In the latter case, as shown by Murphy in 2011, caution should be exercised as there is increased chance of running into contradictions in the middle rounds of the primitive. In this paper, we propose the use of a SAT-based constraint solver URSA as aid in analysis of differential trails and find that previous rectangle/boomerang attacks on XTEA and SHACAL-1 block ciphers and SM3 hash function are based on incompatible trails. Given the C specification of the cryptographic primitive, verifying differential trail portions requires minimal work on the side of the cryptanalyst

    Security analysis of NIST-LWC contest finalists

    Get PDF
    Dissertação de mestrado integrado em Informatics EngineeringTraditional cryptographic standards are designed with a desktop and server environment in mind, so, with the relatively recent proliferation of small, resource constrained devices in the Internet of Things, sensor networks, embedded systems, and more, there has been a call for lightweight cryptographic standards with security, performance and resource requirements tailored for the highly-constrained environments these devices find themselves in. In 2015 the National Institute of Standards and Technology began a Standardization Process in order to select one or more Lightweight Cryptographic algorithms. Out of the original 57 submissions ten finalists remain, with ASCON and Romulus being among the most scrutinized out of them. In this dissertation I will introduce some concepts required for easy understanding of the body of work, do an up-to-date revision on the current situation on the standardization process from a security and performance standpoint, a description of ASCON and Romulus, and new best known analysis, and a comparison of the two, with their advantages, drawbacks, and unique traits.Os padrões criptográficos tradicionais foram elaborados com um ambiente de computador e servidor em mente. Com a proliferação de dispositivos de pequenas dimensões tanto na Internet of Things, redes de sensores e sistemas embutidos, apareceu uma necessidade para se definir padrões para algoritmos de criptografia leve, com prioridades de segurança, performance e gasto de recursos equilibrados para os ambientes altamente limitados em que estes dispositivos operam. Em 2015 o National Institute of Standards and Technology lançou um processo de estandardização com o objectivo de escolher um ou mais algoritmos de criptografia leve. Das cinquenta e sete candidaturas originais sobram apenas dez finalistas, sendo ASCON e Romulus dois desses finalistas mais examinados. Nesta dissertação irei introduzir alguns conceitos necessários para uma fácil compreensão do corpo deste trabalho, assim como uma revisão atualizada da situação atual do processo de estandardização de um ponto de vista tanto de segurança como de performance, uma descrição do ASCON e do Romulus assim como as suas melhores análises recentes e uma comparação entre os dois, frisando as suas vantagens, desvantagens e aspectos únicos

    Entropy in Image Analysis III

    Get PDF
    Image analysis can be applied to rich and assorted scenarios; therefore, the aim of this recent research field is not only to mimic the human vision system. Image analysis is the main methods that computers are using today, and there is body of knowledge that they will be able to manage in a totally unsupervised manner in future, thanks to their artificial intelligence. The articles published in the book clearly show such a future

    Security performance and protocol consideration in optical communication system with optical layer security enabled by optical coding techniques

    Get PDF
    With the fast development of communication systems, network security issues have more and more impact on daily life. It is essential to construct a high degree of optical layer security to resolve the security problem once and for all. Three different techniques which can provide optical layer security are introduced and compared. Optical chaos can be used for fast random number generation. Quantum cryptography is the most promising technique for key distribution. And the optical coding techniques can be deployed to encrypt the modulated signal in the optical layer. A mathematical equation has been derived from information theory to evaluate the information-theoretic security level of the wiretap channel in optical coding schemes. And the merits and limitation of two coherent optical coding schemes, temporal phase coding and spectral phase coding, have been analysed. The security scheme based on a reconfigurable optical coding device has been introduced, and the corresponding security protocol has been developed. By moving the encryption operation from the electronic layer to the optical layer, the modulated signals become opaque to the unauthorised users. Optical code distribution and authentication is the one of the major challenges for our proposed scheme. In our proposed protocol, both of the operations are covered and defined in detail. As a preliminary draft of the optical code security protocol, it could be a useful guidance for further research
    corecore