4,986 research outputs found

    Towards a better approximation for sparsest cut?

    Full text link
    We give a new (1+ϵ)(1+\epsilon)-approximation for sparsest cut problem on graphs where small sets expand significantly more than the sparsest cut (sets of size n/rn/r expand by a factor lognlogr\sqrt{\log n\log r} bigger, for some small rr; this condition holds for many natural graph families). We give two different algorithms. One involves Guruswami-Sinop rounding on the level-rr Lasserre relaxation. The other is combinatorial and involves a new notion called {\em Small Set Expander Flows} (inspired by the {\em expander flows} of ARV) which we show exists in the input graph. Both algorithms run in time 2O(r)poly(n)2^{O(r)} \mathrm{poly}(n). We also show similar approximation algorithms in graphs with genus gg with an analogous local expansion condition. This is the first algorithm we know of that achieves (1+ϵ)(1+\epsilon)-approximation on such general family of graphs

    Stochastic Combinatorial Optimization via Poisson Approximation

    Full text link
    We study several stochastic combinatorial problems, including the expected utility maximization problem, the stochastic knapsack problem and the stochastic bin packing problem. A common technical challenge in these problems is to optimize some function of the sum of a set of random variables. The difficulty is mainly due to the fact that the probability distribution of the sum is the convolution of a set of distributions, which is not an easy objective function to work with. To tackle this difficulty, we introduce the Poisson approximation technique. The technique is based on the Poisson approximation theorem discovered by Le Cam, which enables us to approximate the distribution of the sum of a set of random variables using a compound Poisson distribution. We first study the expected utility maximization problem introduced recently [Li and Despande, FOCS11]. For monotone and Lipschitz utility functions, we obtain an additive PTAS if there is a multidimensional PTAS for the multi-objective version of the problem, strictly generalizing the previous result. For the stochastic bin packing problem (introduced in [Kleinberg, Rabani and Tardos, STOC97]), we show there is a polynomial time algorithm which uses at most the optimal number of bins, if we relax the size of each bin and the overflow probability by eps. For stochastic knapsack, we show a 1+eps-approximation using eps extra capacity, even when the size and reward of each item may be correlated and cancelations of items are allowed. This generalizes the previous work [Balghat, Goel and Khanna, SODA11] for the case without correlation and cancelation. Our algorithm is also simpler. We also present a factor 2+eps approximation algorithm for stochastic knapsack with cancelations. the current known approximation factor of 8 [Gupta, Krishnaswamy, Molinaro and Ravi, FOCS11].Comment: 42 pages, 1 figure, Preliminary version appears in the Proceeding of the 45th ACM Symposium on the Theory of Computing (STOC13

    A Polyhedral Study of Mixed 0-1 Set

    Get PDF
    We consider a variant of the well-known single node fixed charge network flow set with constant capacities. This set arises from the relaxation of more general mixed integer sets such as lot-sizing problems with multiple suppliers. We provide a complete polyhedral characterization of the convex hull of the given set

    Combinatorial Optimization

    Get PDF
    This report summarizes the meeting on Combinatorial Optimization where new and promising developments in the field were discussed. Th
    corecore