439 research outputs found

    Exploration of Computational Methods for Classification of Movement Intention During Human Voluntary Movement from Single Trial EEG

    Get PDF
    Objective: To explore effective combinations of computational methods for the prediction of movement intention preceding the production of self-paced right and left hand movements from single trial scalp electroencephalogram (EEG). Methods: Twelve naïve subjects performed self-paced movements consisting of three key strokes with either hand. EEG was recorded from 128 channels. The exploration was performed offline on single trial EEG data. We proposed that a successful computational procedure for classification would consist of spatial filtering, temporal filtering, feature selection, and pattern classification. A systematic investigation was performed with combinations of spatial filtering using principal component analysis (PCA), independent component analysis (ICA), common spatial patterns analysis (CSP), and surface Laplacian derivation (SLD); temporal filtering using power spectral density estimation (PSD) and discrete wavelet transform (DWT); pattern classification using linear Mahalanobis distance classifier (LMD), quadratic Mahalanobis distance classifier (QMD), Bayesian classifier (BSC), multi-layer perceptron neural network (MLP), probabilistic neural network (PNN), and support vector machine (SVM). A robust multivariate feature selection strategy using a genetic algorithm was employed. Results: The combinations of spatial filtering using ICA and SLD, temporal filtering using PSD and DWT, and classification methods using LMD, QMD, BSC and SVM provided higher performance than those of other combinations. Utilizing one of the better combinations of ICA, PSD and SVM, the discrimination accuracy was as high as 75%. Further feature analysis showed that beta band EEG activity of the channels over right sensorimotor cortex was most appropriate for discrimination of right and left hand movement intention. Conclusions: Effective combinations of computational methods provide possible classification of human movement intention from single trial EEG. Such a method could be the basis for a potential brain-computer interface based on human natural movement, which might reduce the requirement of long-term training. Significance: Effective combinations of computational methods can classify human movement intention from single trial EEG with reasonable accuracy

    Development of a machine learning based methodology for bridge health monitoring

    Get PDF
    Tesi en modalitat de compendi de publicacionsIn recent years the scientific community has been developing new techniques in structural health monitoring (SHM) to identify the damages in civil structures specially in bridges. The bridge health monitoring (BHM) systems serve to reduce overall life-cycle maintenance costs for bridges, as their main objective is to prevent catastrophic failures and damages. In the BHM using dynamic data, there are several problems related to the post-processing of the vibration signals such as: (i) when the modal-based dynamic features like natural frequencies, modes shape and damping are used, they present a limitation in relation to damage location, since they are based on a global response of the structure; (ii) presence of noise in the measurement of vibration responses; (iii) inadequate use of existing algorithms for damage feature extraction because of neglecting the non-linearity and non-stationarity of the recorded signals; (iv) environmental and operational conditions can also generate false damage detections in bridges; (v) the drawbacks of traditional algorithms for processing large amounts of data obtained from the BHM. This thesis proposes new vibration-based parameters and methods with focus on damage detection, localization and quantification, considering a mixed robust methodology that includes signal processing and machine learning methods to solve the identified problems. The increasing volume of bridge monitoring data makes it interesting to study the ability of advanced tools and systems to extract useful information from dynamic and static variables. In the field of Machine Learning (ML) and Artificial Intelligence (AI), powerful algorithms have been developed to face problems where the amount of data is much larger (big data). The possibilities of ML techniques (unsupervised algorithms) were analyzed here in bridges taking into account both operational and environmental conditions. A critical literature review was performed and a deep study of the accuracy and performance of a set of algorithms for detecting damage in three real bridges and one numerical model. In the literature review inherent to the vibration-based damage detection, several state-of-the-art methods have been studied that do not consider the nature of the data and the characteristics of the applied excitation (possible non-linearity, non-stationarity, presence or absence of environmental and/or operational effects) and the noise level of the sensors. Besides, most research uses modal-based damage characteristics that have some limitations. A poor data normalization is performed by the majority of methods and both operational and environmental variability is not properly accounted for. Likewise, the huge amount of data recorded requires automatic procedures with proven capacity to reduce the possibility of false alarms. On the other hand, many investigations have limitations since only numerical or laboratory cases are studied. Therefore, a methodology is proposed by the combination of several algorithms to avoid them. The conclusions show a robust methodology based on ML algorithms capable to detect, localize and quantify damage. It allows the engineers to verify bridges and anticipate significant structural damage when occurs. Moreover, the proposed non-modal parameters show their feasibility as damage features using ambient and forced vibrations. Hilbert-Huang Transform (HHT) in conjunction with Marginal Hilbert Spectrum and Instantaneous Phase Difference shows a great capability to analyze the nonlinear and nonstationary response signals for damage identification under operational conditions. The proposed strategy combines algorithms for signal processing (ICEEMDAN and HHT) and ML (k-means) to conduct damage detection and localization in bridges by using the traffic-induced vibration data in real-time operation.En los últimos años la comunidad científica ha desarrollado nuevas técnicas en monitoreo de salud estructural (SHM) para identificar los daños en estructuras civiles especialmente en puentes. Los sistemas de monitoreo de puentes (BHM) sirven para reducir los costos generales de mantenimiento del ciclo de vida, ya que su principal objetivo es prevenir daños y fallas catastróficas. En el BHM que utiliza datos dinámicos, existen varios problemas relacionados con el procesamiento posterior de las señales de vibración, tales como: (i) cuando se utilizan características dinámicas modales como frecuencias naturales, formas de modos y amortiguamiento, presentan una limitación en relación con la localización del daño, ya que se basan en una respuesta global de la estructura; (ii) presencia de ruido en la medición de las respuestas de vibración; (iii) uso inadecuado de los algoritmos existentes para la extracción de características de daño debido a la no linealidad y la no estacionariedad de las señales registradas; (iv) las condiciones ambientales y operativas también pueden generar falsas detecciones de daños en los puentes; (v) los inconvenientes de los algoritmos tradicionales para procesar grandes cantidades de datos obtenidos del BHM. Esta tesis propone nuevos parámetros y métodos basados en vibraciones con enfoque en la detección, localización y cuantificación de daños, considerando una metodología robusta que incluye métodos de procesamiento de señales y aprendizaje automático. El creciente volumen de datos de monitoreo de puentes hace que sea interesante estudiar la capacidad de herramientas y sistemas avanzados para extraer información útil de variables dinámicas y estáticas. En el campo del Machine Learning (ML) y la Inteligencia Artificial (IA) se han desarrollado potentes algoritmos para afrontar problemas donde la cantidad de datos es mucho mayor (big data). Aquí se analizaron las posibilidades de las técnicas ML (algoritmos no supervisados) teniendo en cuenta tanto las condiciones operativas como ambientales. Se realizó una revisión crítica de la literatura y se llevó a cabo un estudio profundo de la precisión y el rendimiento de un conjunto de algoritmos para la detección de daños en tres puentes reales y un modelo numérico. En la revisión de literatura se han estudiado varios métodos que no consideran la naturaleza de los datos y las características de la excitación aplicada (posible no linealidad, no estacionariedad, presencia o ausencia de efectos ambientales y/u operativos) y el nivel de ruido de los sensores. Además, la mayoría de las investigaciones utilizan características de daño modales que tienen algunas limitaciones. Estos métodos realizan una normalización deficiente de los datos y no se tiene en cuenta la variabilidad operativa y ambiental. Asimismo, la gran cantidad de datos registrados requiere de procedimientos automáticos para reducir la posibilidad de falsas alarmas. Por otro lado, muchas investigaciones tienen limitaciones ya que solo se estudian casos numéricos o de laboratorio. Por ello, se propone una metodología mediante la combinación de varios algoritmos. Las conclusiones muestran una metodología robusta basada en algoritmos de ML capaces de detectar, localizar y cuantificar daños. Permite a los ingenieros verificar puentes y anticipar daños estructurales. Además, los parámetros no modales propuestos muestran su viabilidad como características de daño utilizando vibraciones ambientales y forzadas. La Transformada de Hilbert-Huang (HHT) junto con el Espectro Marginal de Hilbert y la Diferencia de Fase Instantánea muestran una gran capacidad para analizar las señales de respuesta no lineales y no estacionarias para la identificación de daños en condiciones operativas. La estrategia propuesta combina algoritmos para el procesamiento de señales (ICEEMDAN y HHT) y ML (k-means) para detectar y localizar daños en puentes mediante el uso de datos de vibraciones inducidas por el tráfico en tiempo real.Postprint (published version

    Multi-modal association learning using spike-timing dependent plasticity (STDP)

    Get PDF
    We propose an associative learning model that can integrate facial images with speech signals to target a subject in a reinforcement learning (RL) paradigm. Through this approach, the rules of learning will involve associating paired stimuli (stimulus–stimulus, i.e., face–speech), which is also known as predictor-choice pairs. Prior to a learning simulation, we extract the features of the biometrics used in the study. For facial features, we experiment by using two approaches: principal component analysis (PCA)-based Eigenfaces and singular value decomposition (SVD). For speech features, we use wavelet packet decomposition (WPD). The experiments show that the PCA-based Eigenfaces feature extraction approach produces better results than SVD. We implement the proposed learning model by using the Spike- Timing-Dependent Plasticity (STDP) algorithm, which depends on the time and rate of pre-post synaptic spikes. The key contribution of our study is the implementation of learning rules via STDP and firing rate in spatiotemporal neural networks based on the Izhikevich spiking model. In our learning, we implement learning for response group association by following the reward-modulated STDP in terms of RL, wherein the firing rate of the response groups determines the reward that will be given. We perform a number of experiments that use existing face samples from the Olivetti Research Laboratory (ORL) dataset, and speech samples from TIDigits. After several experiments and simulations are performed to recognize a subject, the results show that the proposed learning model can associate the predictor (face) with the choice (speech) at optimum performance rates of 77.26% and 82.66% for training and testing, respectively. We also perform learning by using real data, that is, an experiment is conducted on a sample of face–speech data, which have been collected in a manner similar to that of the initial data. The performance results are 79.11% and 77.33% for training and testing, respectively. Based on these results, the proposed learning model can produce high learning performance in terms of combining heterogeneous data (face–speech). This finding opens possibilities to expand RL in the field of biometric authenticatio
    • …
    corecore