13,154 research outputs found

    Improved Exact Algorithms for Mildly Sparse Instances of Max SAT

    Get PDF
    We present improved exponential time exact algorithms for Max SAT. Our algorithms run in time of the form O(2^{(1-mu(c))n}) for instances with n variables and m=cn clauses. In this setting, there are three incomparable currently best algorithms: a deterministic exponential space algorithm with mu(c)=1/O(c * log(c)) due to Dantsin and Wolpert [SAT 2006], a randomized polynomial space algorithm with mu(c)=1/O(c * log^3(c)) and a deterministic polynomial space algorithm with mu(c)=1/O(c^2 * log^2(c)) due to Sakai, Seto and Tamaki [Theory Comput. Syst., 2015]. Our first result is a deterministic polynomial space algorithm with mu(c)=1/O(c * log(c)) that achieves the previous best time complexity without exponential space or randomization. Furthermore, this algorithm can handle instances with exponentially large weights and hard constraints. The previous algorithms and our deterministic polynomial space algorithm run super-polynomially faster than 2^n only if m=O(n^2). Our second results are deterministic exponential space algorithms for Max SAT with mu(c)=1/O((c * log(c))^{2/3}) and for Max 3-SAT with mu(c)=1/O(c^{1/2}) that run super-polynomially faster than 2^n when m=o(n^{5/2}/log^{5/2}(n)) and m=o(n^3/log^2(n)) respectively

    Time-Space Lower Bounds for Simulating Proof Systems with Quantum and Randomized Verifiers

    Get PDF
    A line of work initiated by Fortnow in 1997 has proven model-independent time-space lower bounds for the SAT\mathsf{SAT} problem and related problems within the polynomial-time hierarchy. For example, for the SAT\mathsf{SAT} problem, the state-of-the-art is that the problem cannot be solved by random-access machines in ncn^c time and no(1)n^{o(1)} space simultaneously for c<2cos(π7)1.801c < 2\cos(\frac{\pi}{7}) \approx 1.801. We extend this lower bound approach to the quantum and randomized domains. Combining Grover's algorithm with components from SAT\mathsf{SAT} time-space lower bounds, we show that there are problems verifiable in O(n)O(n) time with quantum Merlin-Arthur protocols that cannot be solved in ncn^c time and no(1)n^{o(1)} space simultaneously for c<3+322.366c < \frac{3+\sqrt{3}}{2} \approx 2.366, a super-quadratic time lower bound. This result and the prior work on SAT\mathsf{SAT} can both be viewed as consequences of a more general formula for time lower bounds against small-space algorithms, whose asymptotics we study in full. We also show lower bounds against randomized algorithms: there are problems verifiable in O(n)O(n) time with (classical) Merlin-Arthur protocols that cannot be solved in ncn^c randomized time and no(1)n^{o(1)} space simultaneously for c<1.465c < 1.465, improving a result of Diehl. For quantum Merlin-Arthur protocols, the lower bound in this setting can be improved to c<1.5c < 1.5.Comment: 38 pages, 5 figures. To appear in ITCS 202

    Breaking the PPSZ Barrier for Unique 3-SAT

    Full text link
    The PPSZ algorithm by Paturi, Pudl\'ak, Saks, and Zane (FOCS 1998) is the fastest known algorithm for (Promise) Unique k-SAT. We give an improved algorithm with exponentially faster bounds for Unique 3-SAT. For uniquely satisfiable 3-CNF formulas, we do the following case distinction: We call a clause critical if exactly one literal is satisfied by the unique satisfying assignment. If a formula has many critical clauses, we observe that PPSZ by itself is already faster. If there are only few clauses allover, we use an algorithm by Wahlstr\"om (ESA 2005) that is faster than PPSZ in this case. Otherwise we have a formula with few critical and many non-critical clauses. Non-critical clauses have at least two literals satisfied; we show how to exploit this to improve PPSZ.Comment: 13 pages; major revision with simplified algorithm but slightly worse constant
    corecore