1,424 research outputs found

    Design, development and characterisation of piezoresistive and capacitive polymeric pressure sensors for use in compression hosiery

    Get PDF
    The work in this thesis was focused in developing a flexible and cost-effective pressure sensor capable of detecting pressure variations within the low working range (0-6kPa) of compression hosiery. For this cause, both piezoresistive and capacitive pressure sensors were developed and characterised, utilising conductive and non-conductive polymeric elements to sense compressive loads. In the first case, the developed piezoresistive sensor is composed of a conductive filler - polymer composite, with a force-dependent conductivity, encapsulated in between a structured and unstructured configuration of electrodes. Initially, as the sensing element of the sensor a multi-walled carbon nanotubes-polydimethylsiloxane (MWCNT-PDMS) composite was tested. A fabrication process is also proposed for developing the MWCNT-PDMS composite which involves a series of successive direct ultrasonications and shear mixing in order to disperse the two constituents of the composite, with the use of an organic solvent. Developing the composite over a range of different filler concentrations revealed a sharp step-like conductivity behaviour, typical amongst percolating composites. The MWCNT-PDMS sensor exhibited a positive piezoresistive response when subjected to compression, which was substantially enhanced when structured electrode layers were utilised. A Quantum Tunnelling Composite (QTC) material was also tested as the sensing material, which displays a large negative piezoresistive response when deformed. The QTC pressure sensor exhibited an improved performance, which was similarly significantly increased when a structured electrode was employed. In the second case, a parallel-plate capacitive pressure sensor was developed and characterised, which successfully provided a pressure sensitivity within the working range of compression hosiery. The sensor employs an ultra-thin PDMS blend film, with tuneable Young’s modulus, as the dielectric medium of the capacitor, bonded in between two rigid copper-coated glass layers. A casting process is also presented, involving the use of a sacrificial mould, in order to pattern the polymeric film with a micro-pillar structure to assist the deformation of the medium under compressive loads. The performance of the sensor with regards to the polymeric film thickness, structure and mechanical softness was explored. Overall, the combination of an ultra-thin dielectric medium with a very low Young’s modulus and a microstructured surface resulted in a capacitive pressure sensor with a good performance within the desired pressure regime

    Electroadhesion Technologies For Robotics:A Comprehensive Review

    Get PDF

    Smart Devices and Systems for Wearable Applications

    Get PDF
    Wearable technologies need a smooth and unobtrusive integration of electronics and smart materials into textiles. The integration of sensors, actuators and computing technologies able to sense, react and adapt to external stimuli, is the expression of a new generation of wearable devices. The vision of wearable computing describes a system made by embedded, low power and wireless electronics coupled with smart and reliable sensors - as an integrated part of textile structure or directly in contact with the human body. Therefore, such system must maintain its sensing capabilities under the demand of normal clothing or textile substrate, which can impose severe mechanical deformation to the underlying garment/substrate. The objective of this thesis is to introduce a novel technological contribution for the next generation of wearable devices adopting a multidisciplinary approach in which knowledge of circuit design with Ultra-Wide Band and Bluetooth Low Energy technology, realization of smart piezoresistive / piezocapacitive and electro-active material, electro-mechanical characterization, design of read-out circuits and system integration find a fundamental and necessary synergy. The context and the results presented in this thesis follow an “applications driven” method in terms of wearable technology. A proof of concept has been designed and developed for each addressed issue. The solutions proposed are aimed to demonstrate the integration of a touch/pressure sensor into a fabric for space debris detection (CApture DEorbiting Target project), the effectiveness of the Ultra-Wide Band technology as an ultra-low power data transmission option compared with well known Bluetooth (IR-UWB data transmission project) and to solve issues concerning human proximity estimation (IR-UWB Face-to-Face Interaction and Proximity Sensor), wearable actuator for medical applications (EAPtics project) and aerospace physiology countermeasure (Gravity Loading Countermeasure Skinsuit project)

    Coupled Plasmonic Nanostructures Based on Core-Shell Particles

    Get PDF
    Plasmonic nanoparticles feature remarkable optical and electronic properties in consequence of the excitation of conduction band electrons by visible light, which leads to collective oscillations. This so called localized surface plasmon resonance (LSPR) is utilized in the fields of photovoltaics, sensing, catalysis and optoelectronics. Especially, the emergence of optical metasurfaces—subwavelength structured surfaces with properties typically not occurring for homogeneous materials—has attracted significant attention for the applications mentioned above. However, their fabrication is usually complex and the materials often lack in situ tunability. Here, a colloidal approach is demonstrated for the preparation of optical metasurfaces with tunable properties. They are based on plasmonic gold nanoparticles, which were coated with three different shell materials to provide three different functionalities when coupled to plasmonic mirrors: i) Dye-labeled silica coatings exhibit strong enhancement of their fluorescent properties, as shown in this extensive single particle study. ii) Hydrogel shells are applied to receive switchable electric and magnetic properties in response to swelling of the gel. iii) Electrochromic polymer coatings facilitate the preparation of anti-reflective metasurfaces that feature tunable efficiency by changing the pH or applying a voltage. In addition, mechano-tunable plasmonic lattices are demonstrated. The material is based on self-assembled gold nanoparticles, which are embedded in a transparent elastomer matrix and feature pronounced surface lattice resonances (SLR). These tunable resonances could be applied for lasing, strain sensing, or controlling catalytic reactions.Plasmonische Nanopartikel besitzen bemerkenswerte optische und elektronische Eigenschaften, die sie fĂŒr Anwendungen in Bereichen der Katalyse, Sensorik, Optoelektronik, sowie der Nanooptik prĂ€destinieren. Ihre Eigenschaften beruhen auf der Anregung von Leitungsbandelektronen zu kollektiven Oszillationen durch sichtbares Licht. Diese sogenannte OberflĂ€chenplasmonenresonanz ist insbesondere fĂŒr optische MetaoberflĂ€chen von Interesse, also Materialien mit strukturierten OberflĂ€chen im GrĂ¶ĂŸenbereich unterhalb der sichtbaren WellenlĂ€ngen, welche Charakteristika aufweisen, die bei homogenen Materialien typischerweise nicht auftreten. Sie werden allerdings hĂ€ufig mit aufwendigen Methoden hergestellt und sind in situ nicht justierbar. In dieser Arbeit werden kolloidale AnsĂ€tze zur Herstellung plasmonischer MetaoberflĂ€chen mit einstellbaren optischen und elektronischen Eigenschaften vorgestellt. Das Konzept basiert auf der Verwendung von plasmonischen Goldkernen, die mit drei unterschiedlichen funktionellen Schalen beschichtet und anschließend mit plasmonischen Spiegeln gekoppelt wurden: i) Farbstoffmarkierte Silicapartikel zeigen starke Fluoreszenz-verstĂ€rkung, wie in dieser ausfĂŒhrlichen Einzelpartikelstudie nachgewiesen wird. ii) Hydrogelbeschichtungen werden verwendet um schaltbare elektrische und magnetische Eigenschaften mittels Quellung zu erzeugen. iii) Elektrochrome PolymerhĂŒllen fungieren als Antireflexschicht auf GoldoberflĂ€chen, deren Extinktion sich mittels Anlegen einer Spannung oder durch pH-Änderungen einstellen lĂ€sst. Neben diesen AnsĂ€tzen werden mechanisch einstellbare plasmonische Gitterstrukturen vorgestellt. Die selbstassemblierten und in transparentem Elastomer eingebetteten Goldnanopartikel weisen eine ausgeprĂ€gte OberflĂ€chengitterresonanz auf. Diese kann fĂŒr sensorische Zwecke in den Bereichen der Mikromechanik und der Katalyse, sowie fĂŒr abstimmbare Laser verwendet werden

    An Optical Sensor Design: Concurrent Multi-axis Force Measurement and Tactile Perception.

    Get PDF
    PhD ThesesForce and tactile sensing have experienced a surge of interest over recent decades, as they convey useful information about the direct physical interaction between the sensor and the external environment. A robot end effector is a device designed to interact with the environment. End effectors such as robotic hands and grippers can be used to pick up, place or generally manipulate objects. There is a clear need to equip such end effectors with appropriate sensing means to be able to measure tactile and force information. Work to date has explored these two modalities separately. Tactile sensors have been developed for integration with gripper fingertips or as skins embedded with the outer side of manipulators, mainly to measure normal force and its distribution across a surface patch. On the other hand, force sensors have commonly been integrated with the joints of robotic arms or fingers to measure external multi-axis forces and torques via the connected links. We observe that a force sensor cannot measure tactile information, and current tactile sensors cannot accurately measure force information. This can become a particular issue when integrating force sensors remotely to measure forces indirectly, especially if the connecting link is flexible or, generally, difficult to model potentially impacting negatively on the force estimates. We aim to provide a solution for an integrated sensor capable of measuring tactile and force information at the point of contact, i.e., on the fingertip of a robot hand or arm. In this thesis, we explore the idea of integrating the two sensing modalities, tactile and force sensing, in one sensor housing with the signal acquisition being performed by a single monocular camera acting as the transducer. The hypothesis is that an integrated force/tactile sensor will perform in a better way than having these sensor modalities separated. This thesis shows that an integrated sensor achieves a tactile sensing performance comparable to existing vision-based tactile sensors and at the same time proves to provide more accurate force sensor information whilst extending the field of similar vision-based sensors from 3 DoF to 6 DoF. In addition, the tactile sensing element of our sensor is not affected by the patterns superimposed on to the flexible element of comparable vision-based sensors used to infer force information. In this thesis, we have implemented several sensor prototypes; designs and experimental analyses for each prototype are being provided. The manufactured sensor prototypes prove the validity of the proposed vision-based dual-modality sensing approach, and the proposed sensing principle and structure shows high versatility and accuracy, as well as the potential for further miniaturization, making the proposed concept suitable for integration with standard robot end effectors
    • 

    corecore