12,574 research outputs found

    Ais-Psmaca: Towards Proposing an Artificial Immune System for Strengthening Psmaca: An Automated Protein Structure Prediction using Multiple Attractor Cellular Automata

    Get PDF
    Predicting the structure of proteins from their amino acid sequences has gained a remarkable attention in recent years. Even though there are some prediction techniques addressing this problem, the approximate accuracy in predicting the protein structure is closely 75%. An automated procedure was evolved with MACA (Multiple Attractor Cellular Automata) for predicting the structure of the protein. Artificial Immune System (AIS-PSMACA) a novel computational intelligence technique is used for strengthening the system (PSMACA) with more adaptability and incorporating more parallelism to the system. Most of the existing approaches are sequential which will classify the input into four major classes and these are designed for similar sequences. AIS-PSMACA is designed to identify ten classes from the sequences that share twilight zone similarity and identity with the training sequences with mixed and hybrid variations. This method also predicts three states (helix, strand, and coil) for the secondary structure. Our comprehensive design considers 10 feature selection methods and 4 classifiers to develop MACA (Multiple Attractor Cellular Automata) based classifiers that are build for each of the ten classes. We have tested the proposed classifier with twilight-zone and 1-high-similarity benchmark datasets with over three dozens of modern competing predictors shows that AIS-PSMACA provides the best overall accuracy that ranges between 80% and 89.8% depending on the dataset

    Immunoinformatics: Predicting Peptide–MHC Binding

    Get PDF
    Immunoinformatics is a discipline that applies methods of computer science to study and model the immune system. A fundamental question addressed by immunoinformatics is how to understand the rules of antigen presentation by MHC molecules to T cells, a process that is central to adaptive immune responses to infections and cancer. In the modern era of personalized medicine, the ability to model and predict which antigens can be presented by MHC is key to manipulating the immune system and designing strategies for therapeutic intervention. Since the MHC is both polygenic and extremely polymorphic, each individual possesses a personalized set of MHC molecules with different peptide-binding specificities, and collectively they present a unique individualized peptide imprint of the ongoing protein metabolism. Mapping all MHC allotypes is an enormous undertaking that cannot be achieved without a strong bioinformatics component. Computational tools for the prediction of peptide?MHC binding have thus become essential in most pipelines for T cell epitope discovery and an inescapable component of vaccine and cancer research. Here, we describe the development of several such tools, from pioneering efforts to the current state-of-the-art methods, that have allowed for accurate predictions of peptide binding of all MHC molecules, even including those that have not yet been characterized experimentally.Fil: Nielsen, Morten. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas; Argentina. Technical University of Denmark; DinamarcaFil: Andreatta, Massimo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas; ArgentinaFil: Peters, Bjoern. La Jolla Institute for Allergy and Immunology; Estados UnidosFil: Buus, Søren. Universidad de Copenhagen; Dinamarc

    IN-AIS-MACA: Integrated Artificial Immune System based Multiple Attractor Cellular Automata For Human Protein Coding and Promoter Prediction of 252bp Length DNA Sequence

    Get PDF
    Gene prediction involves protein coding and promoter predictions. There is a need of integrated algorithms which can predict both these regions at a faster rate. Till date, we have individual algorithms for addressing these problems. We have developed a novel classifier IN-AIS-MACA, which can predict both these regions in genomic DNA sequences of length 252bp with 93.5% accuracy and total prediction time of 1031ms. This classifier will certainly create intuition to develop more classifiers like this

    Computational Analysis of T Cell Receptor Repertoire and Structure

    Get PDF
    The human adaptive immune system has evolved to provide a sophisticated response to a vast body of pathogenic microbes and toxic substances. The primary mediators of this response are T and B lymphocytes. Antigenic peptides presented at the surface of infected cells by major histocompatibility complex (MHC) molecules are recognised by T cell receptors (TCRs) with exceptional specificity. This specificity arises from the enormous diversity in TCR sequence and structure generated through an imprecise process of somatic gene recombination that takes place during T cell development. Quantification of the TCR repertoire through the analysis of data produced by high-throughput RNA sequencing allows for a characterisation of the immune response to disease over time and between patients, and the development of methods for diagnosis and therapeutic design. The latest version of the software package Decombinator extracts and quantifies the TCR repertoire with improved accuracy and compatibility with complementary experimental protocols and external computational tools. The software has been extended for analysis of fragmented short-read data from single cells, comparing favourably with two alternative tools. The development of cell-based therapeutics and vaccines is incomplete without an understanding of molecular level interactions. The breadth of TCR diversity and cross-reactivity presents a barrier for comprehensive structural resolution of the repertoire by traditional means. Computational modelling of TCR structures and TCR-pMHC complexes provides an efficient alternative. Four generalpurpose protein-protein docking platforms were compared in their ability to accurately model TCR-pMHC complexes. Each platform was evaluated against an expanded benchmark of docking test cases and in the context of varying additional information about the binding interface. Continual innovation in structural modelling techniques sets the stage for novel automated tools for TCR design. A prototype platform has been developed, integrating structural modelling and an optimisation routine, to engineer desirable features into TCR and TCR-pMHC complex models

    Ab Initio Protein Structure Prediction Using Evolutionary Approach: A Survey

    Get PDF
    Protein Structure Prediction (PSP) problem is to determine the three-dimensional structure of a protein only from its primary structure. Misfolding of a protein causes human diseases. Thus, the knowledge of the structure and functionality of proteins, combined with the prediction of their structure is a complex problem and a challenge for the area of computational biology. The metaheuristic optimization algorithms are naturally applicable to support in solving NP-hard problems.These algorithms are bio-inspired, since they were designed based on procedures found in nature, such as the successful evolutionary behavior of natural systems. In this paper, we present a survey on methods to approach the \textit{ab initio} protein structure prediction based on evolutionary computing algorithms, considering both single and multi-objective optimization. An overview of the works is presented, with some details about which characteristics of the problem are considered, as well as specific points of the algorithms used. A comparison between the approaches is presented and some directions of the research field are pointed out

    Combining genetic algorithm with machine learning strategies for designing potent antimicrobial peptides

    Get PDF
    Background Current methods in machine learning provide approaches for solving challenging, multiple constraint design problems. While deep learning and related neural networking methods have state-of-the-art performance, their vulnerability in decision making processes leading to irrational outcomes is a major concern for their implementation. With the rising antibiotic resistance, antimicrobial peptides (AMPs) have increasingly gained attention as novel therapeutic agents. This challenging design problem requires peptides which meet the multiple constraints of limiting drug-resistance in bacteria, preventing secondary infections from imbalanced microbial flora, and avoiding immune system suppression. AMPs offer a promising, bioinspired design space to targeting antimicrobial activity, but their versatility also requires the curated selection from a combinatorial sequence space. This space is too large for brute-force methods or currently known rational design approaches outside of machine learning. While there has been progress in using the design space to more effectively target AMP activity, a widely applicable approach has been elusive. The lack of transparency in machine learning has limited the advancement of scientific knowledge of how AMPs are related among each other, and the lack of general applicability for fully rational approaches has limited a broader understanding of the design space. Methods Here we combined an evolutionary method with rough set theory, a transparent machine learning approach, for designing antimicrobial peptides (AMPs). Our method achieves the customization of AMPs using supervised learning boundaries. Our system employs in vitro bacterial assays to measure fitness, codon-representation of peptides to gain flexibility of sequence selection in DNA-space with a genetic algorithm and machine learning to further accelerate the process. Results We use supervised machine learning and a genetic algorithm to find a peptide active against S. epidermidis, a common bacterial strain for implant infections, with an improved aggregation propensity average for an improved ease of synthesis. Conclusions Our results demonstrate that AMP design can be customized to maintain activity and simplify production. To our knowledge, this is the first time when codon-based genetic algorithms combined with rough set theory methods is used for computational search on peptide sequences

    Evolutionary Algorithms with Mixed Strategy

    Get PDF

    Evolutionary Computation

    Get PDF
    This book presents several recent advances on Evolutionary Computation, specially evolution-based optimization methods and hybrid algorithms for several applications, from optimization and learning to pattern recognition and bioinformatics. This book also presents new algorithms based on several analogies and metafores, where one of them is based on philosophy, specifically on the philosophy of praxis and dialectics. In this book it is also presented interesting applications on bioinformatics, specially the use of particle swarms to discover gene expression patterns in DNA microarrays. Therefore, this book features representative work on the field of evolutionary computation and applied sciences. The intended audience is graduate, undergraduate, researchers, and anyone who wishes to become familiar with the latest research work on this field
    corecore