1,092 research outputs found

    The Crypto-democracy and the Trustworthy

    Full text link
    In the current architecture of the Internet, there is a strong asymmetry in terms of power between the entities that gather and process personal data (e.g., major Internet companies, telecom operators, cloud providers, ...) and the individuals from which this personal data is issued. In particular, individuals have no choice but to blindly trust that these entities will respect their privacy and protect their personal data. In this position paper, we address this issue by proposing an utopian crypto-democracy model based on existing scientific achievements from the field of cryptography. More precisely, our main objective is to show that cryptographic primitives, including in particular secure multiparty computation, offer a practical solution to protect privacy while minimizing the trust assumptions. In the crypto-democracy envisioned, individuals do not have to trust a single physical entity with their personal data but rather their data is distributed among several institutions. Together these institutions form a virtual entity called the Trustworthy that is responsible for the storage of this data but which can also compute on it (provided first that all the institutions agree on this). Finally, we also propose a realistic proof-of-concept of the Trustworthy, in which the roles of institutions are played by universities. This proof-of-concept would have an important impact in demonstrating the possibilities offered by the crypto-democracy paradigm.Comment: DPM 201

    Scather: programming with multi-party computation and MapReduce

    Full text link
    We present a prototype of a distributed computational infrastructure, an associated high level programming language, and an underlying formal framework that allow multiple parties to leverage their own cloud-based computational resources (capable of supporting MapReduce [27] operations) in concert with multi-party computation (MPC) to execute statistical analysis algorithms that have privacy-preserving properties. Our architecture allows a data analyst unfamiliar with MPC to: (1) author an analysis algorithm that is agnostic with regard to data privacy policies, (2) to use an automated process to derive algorithm implementation variants that have different privacy and performance properties, and (3) to compile those implementation variants so that they can be deployed on an infrastructures that allows computations to take place locally within each participant’s MapReduce cluster as well as across all the participants’ clusters using an MPC protocol. We describe implementation details of the architecture, discuss and demonstrate how the formal framework enables the exploration of tradeoffs between the efficiency and privacy properties of an analysis algorithm, and present two example applications that illustrate how such an infrastructure can be utilized in practice.This work was supported in part by NSF Grants: #1430145, #1414119, #1347522, and #1012798

    General Impossibility of Group Homomorphic Encryption in the Quantum World

    Get PDF
    Group homomorphic encryption represents one of the most important building blocks in modern cryptography. It forms the basis of widely-used, more sophisticated primitives, such as CCA2-secure encryption or secure multiparty computation. Unfortunately, recent advances in quantum computation show that many of the existing schemes completely break down once quantum computers reach maturity (mainly due to Shor's algorithm). This leads to the challenge of constructing quantum-resistant group homomorphic cryptosystems. In this work, we prove the general impossibility of (abelian) group homomorphic encryption in the presence of quantum adversaries, when assuming the IND-CPA security notion as the minimal security requirement. To this end, we prove a new result on the probability of sampling generating sets of finite (sub-)groups if sampling is done with respect to an arbitrary, unknown distribution. Finally, we provide a sufficient condition on homomorphic encryption schemes for our quantum attack to work and discuss its satisfiability in non-group homomorphic cases. The impact of our results on recent fully homomorphic encryption schemes poses itself as an open question.Comment: 20 pages, 2 figures, conferenc

    Secure Numerical and Logical Multi Party Operations

    Full text link
    We derive algorithms for efficient secure numerical and logical operations using a recently introduced scheme for secure multi-party computation~\cite{sch15} in the semi-honest model ensuring statistical or perfect security. To derive our algorithms for trigonometric functions, we use basic mathematical laws in combination with properties of the additive encryption scheme in a novel way. For division and logarithm we use a new approach to compute a Taylor series at a fixed point for all numbers. All our logical operations such as comparisons and large fan-in AND gates are perfectly secure. Our empirical evaluation yields speed-ups of more than a factor of 100 for the evaluated operations compared to the state-of-the-art

    Design of large scale applications of secure multiparty computation : secure linear programming

    Get PDF
    Secure multiparty computation is a basic concept of growing interest in modern cryptography. It allows a set of mutually distrusting parties to perform a computation on their private information in such a way that as little as possible is revealed about each private input. The early results of multiparty computation have only theoretical signi??cance since they are not able to solve computationally complex functions in a reasonable amount of time. Nowadays, e??ciency of secure multiparty computation is an important topic of cryptographic research. As a case study we apply multiparty computation to solve the problem of secure linear programming. The results enable, for example in the context of the EU-FP7 project SecureSCM, collaborative supply chain management. Collaborative supply chain management is about the optimization of the supply and demand con??guration of a supply chain. In order to optimize the total bene??t of the entire chain, parties should collaborate by pooling their sensitive data. With the focus on e??ciency we design protocols that securely solve any linear program using the simplex algorithm. The simplex algorithm is well studied and there are many variants of the simplex algorithm providing a simple and e??cient solution to solving linear programs in practice. However, the cryptographic layer on top of any variant of the simplex algorithm imposes restrictions and new complexity measures. For example, hiding the number of iterations of the simplex algorithm has the consequence that the secure implementations have a worst case number of iterations. Then, since the simplex algorithm has exponentially many iterations in the worst case, the secure implementations have exponentially many iterations in all cases. To give a basis for understanding the restrictions, we review the basic theory behind the simplex algorithm and we provide a set of cryptographic building blocks used to implement secure protocols evaluating basic variants of the simplex algorithm. We show how to balance between privacy and e??ciency; some protocols reveal data about the internal state of the simplex algorithm, such as the number of iterations, in order to improve the expected running times. For the sake of simplicity and e??ciency, the protocols are based on Shamir's secret sharing scheme. We combine and use the results from the literature on secure random number generation, secure circuit evaluation, secure comparison, and secret indexing to construct e??cient building blocks for secure simplex. The solutions for secure linear programming in this thesis can be split into two categories. On the one hand, some protocols evaluate the classical variants of the simplex algorithm in which numbers are truncated, while the other protocols evaluate the variants of the simplex algorithms in which truncation is avoided. On the other hand, the protocols can be separated by the size of the tableaus. Theoretically there is no clear winner that has both the best security properties and the best performance

    Privacy-Aware Processing of Biometric Templates by Means of Secure Two-Party Computation

    Get PDF
    The use of biometric data for person identification and access control is gaining more and more popularity. Handling biometric data, however, requires particular care, since biometric data is indissolubly tied to the identity of the owner hence raising important security and privacy issues. This chapter focuses on the latter, presenting an innovative approach that, by relying on tools borrowed from Secure Two Party Computation (STPC) theory, permits to process the biometric data in encrypted form, thus eliminating any risk that private biometric information is leaked during an identification process. The basic concepts behind STPC are reviewed together with the basic cryptographic primitives needed to achieve privacy-aware processing of biometric data in a STPC context. The two main approaches proposed so far, namely homomorphic encryption and garbled circuits, are discussed and the way such techniques can be used to develop a full biometric matching protocol described. Some general guidelines to be used in the design of a privacy-aware biometric system are given, so as to allow the reader to choose the most appropriate tools depending on the application at hand
    • 

    corecore