35 research outputs found

    Proceedings, MSVSCC 2014

    Get PDF
    Proceedings of the 8th Annual Modeling, Simulation & Visualization Student Capstone Conference held on April 17, 2014 at VMASC in Suffolk, Virginia

    Deep Model for Improved Operator Function State Assessment

    Get PDF
    A deep learning framework is presented for engagement assessment using EEG signals. Deep learning is a recently developed machine learning technique and has been applied to many applications. In this paper, we proposed a deep learning strategy for operator function state (OFS) assessment. Fifteen pilots participated in a flight simulation from Seattle to Chicago. During the four-hour simulation, EEG signals were recorded for each pilot. We labeled 20- minute data as engaged and disengaged to fine-tune the deep network and utilized the remaining vast amount of unlabeled data to initialize the network. The trained deep network was then used to assess if a pilot was engaged during the four-hour simulation

    Advancements and Breakthroughs in Ultrasound Imaging

    Get PDF
    Ultrasonic imaging is a powerful diagnostic tool available to medical practitioners, engineers and researchers today. Due to the relative safety, and the non-invasive nature, ultrasonic imaging has become one of the most rapidly advancing technologies. These rapid advances are directly related to the parallel advancements in electronics, computing, and transducer technology together with sophisticated signal processing techniques. This book focuses on state of the art developments in ultrasonic imaging applications and underlying technologies presented by leading practitioners and researchers from many parts of the world

    Characterization of a turbulent separating/ reattaching flow using optical pressure and velocity measurements

    Get PDF
    The turbulent wake flow behind a generic spacecraft was investigated experimentally in the trisonic wind tunnel Munich at subsonic Mach numbers M = [0.3; 0.7]. The flow/ structure interaction which raised critical safety aspects on the real spacecraft in the past was studied. The characterization of the coherent flow structures was performed by means of transient optical and classical measurement techniques. The topology and dynamics of the wake flow and the pressure field were investigated with the 2C2D-PIV and the instationary PSP. The reattachment position as well as the local dynamic behavior of strong flow structures were successfully characterized and the presence of dominant vortex shedding at expected frequencies around f ≈ [400; 900] Hz was confirmed. It was the first time that the fluid/ structure interaction and the position of strongest stresses could be characterized experimentally with very high spatial and temporal resolution. A PSP system had to be established in order to perform the desired experiments. Therefore, basic components (e.g. calibration chamber, excitation, evaluation tool) had to be developed and the performance of the entire system had to be validated

    Advanced Applications of Rapid Prototyping Technology in Modern Engineering

    Get PDF
    Rapid prototyping (RP) technology has been widely known and appreciated due to its flexible and customized manufacturing capabilities. The widely studied RP techniques include stereolithography apparatus (SLA), selective laser sintering (SLS), three-dimensional printing (3DP), fused deposition modeling (FDM), 3D plotting, solid ground curing (SGC), multiphase jet solidification (MJS), laminated object manufacturing (LOM). Different techniques are associated with different materials and/or processing principles and thus are devoted to specific applications. RP technology has no longer been only for prototype building rather has been extended for real industrial manufacturing solutions. Today, the RP technology has contributed to almost all engineering areas that include mechanical, materials, industrial, aerospace, electrical and most recently biomedical engineering. This book aims to present the advanced development of RP technologies in various engineering areas as the solutions to the real world engineering problems

    CAPS--Computer-aided plastic surgery

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Architecture, 1992.Includes bibliographical references (leaves 166-173).by Steven Donald Pieper.Ph.D

    Damage and material identification using inverse analysis

    Get PDF
    In this thesis, we formulate novel solutions to two inverse problems using optical measurements as input data: i) local level damage identification of beams, and ii) material constitutive parameter identification using digital image correlation measurement of surface strain/displacements. A novel photogrammetric procedure based on edge-detection was devised to measure the quasi-continuous deflection of beams under given loading. This method is based on the close-range photogrammetry technique made possible through recent developments of image processing algorithms and modern digital cameras. Two computational procedures to reconstruct the stiffness distribution and to detect damage in Euler-Bernoulli beams are developed in this thesis. The first formulation is based on the principle of the equilibrium gap along with a finite element discretization. The solution is obtained by minimizing a regularized functional using a Tikhonov Total Variation (TTV) scheme. The second proposed formulation is a minimization of a data discrepancy functional between measured and model-based deflections. The optimal solution is obtained using a gradient-based minimization algorithm and the adjoint method to calculate the Jacobian. The proposed identification methodology is validated using experimental data. The proposed methodology has the potential to be used for long term health monitoring and damage assessment of civil engineering structures. The identification of material plasticity parameters is carried out by minimizing a least-square functional measuring the gap between inhomogeneous displacement fields obtained from measurements and finite element simulations. The material parameters are identified simultaneously by means of direct, derivative-free optimization methods where the finite element simulation is treated as a black-box procedure. Methods verifying and validating the identified results are given. Particular interest is given to the identifiability issue in deterministic and statistical sense. The validation procedure intends to detect false positive results (type-II errors). The performance of the computational procedures is illustrated by numerical and experimental examples. The proposed approach avoids using the gradient of the cost function in the identification process; it has the benefit of allowing the use of any finite element code as a black box to solve the direct problem

    EXPERIMENTAL STUDIES FOR DEVELOPMENT HIGH-POWER AUDIO SPEAKER DEVICES PERFORMANCE USING PERMANENT NdFeB MAGNETS SPECIAL TECHNOLOGY

    Get PDF
    In this paper the authors shows the research made for improving high-power audio speaker devices performance using permanent NdFeB magnets special technology. Magnetic losses inside these audio devices are due to mechanical system frictions and to thermal effect of Joules eddy currents. In this regard, by special technology, were made conical surfaces at top plate and center pin. Analysing results obtained by modelling the magnetic circuit finite element method using electronic software package,was measured increase efficiency by over 10 %, from 1,136T to13T

    Proceedings, MSVSCC 2015

    Get PDF
    The Virginia Modeling, Analysis and Simulation Center (VMASC) of Old Dominion University hosted the 2015 Modeling, Simulation, & Visualization Student capstone Conference on April 16th. The Capstone Conference features students in Modeling and Simulation, undergraduates and graduate degree programs, and fields from many colleges and/or universities. Students present their research to an audience of fellow students, faculty, judges, and other distinguished guests. For the students, these presentations afford them the opportunity to impart their innovative research to members of the M&S community from academic, industry, and government backgrounds. Also participating in the conference are faculty and judges who have volunteered their time to impart direct support to their students’ research, facilitate the various conference tracks, serve as judges for each of the tracks, and provide overall assistance to this conference. 2015 marks the ninth year of the VMASC Capstone Conference for Modeling, Simulation and Visualization. This year our conference attracted a number of fine student written papers and presentations, resulting in a total of 51 research works that were presented. This year’s conference had record attendance thanks to the support from the various different departments at Old Dominion University, other local Universities, and the United States Military Academy, at West Point. We greatly appreciated all of the work and energy that has gone into this year’s conference, it truly was a highly collaborative effort that has resulted in a very successful symposium for the M&S community and all of those involved. Below you will find a brief summary of the best papers and best presentations with some simple statistics of the overall conference contribution. Followed by that is a table of contents that breaks down by conference track category with a copy of each included body of work. Thank you again for your time and your contribution as this conference is designed to continuously evolve and adapt to better suit the authors and M&S supporters. Dr.Yuzhong Shen Graduate Program Director, MSVE Capstone Conference Chair John ShullGraduate Student, MSVE Capstone Conference Student Chai
    corecore