879 research outputs found

    A Simplified Scheme of Estimation and Cancellation of Companding Noise for Companded Multicarrier Transmission Systems

    Get PDF
    Nonlinear companding transform is an efficient method to reduce the high peak-to-average power ratio (PAPR) of multicarrier transmission systems. However, the introduced companding noise greatly degrades the bit-error-rate (BER) performance of the companded multicarrier systems. In this paper, a simplified but effective scheme of estimation and cancellation of companding noise for the companded multicarrier transmission system is proposed. By expressing the companded signals as the summation of original signals added with a companding noise component, and subtracting this estimated companding noise from the received signals, the BER performance of the overall system can be significantly improved. Simulation results well confirm the great advantages of the proposed scheme over other conventional decompanding or no decompanding schemes under various situations

    Frequency-Selective PAPR Reduction for OFDM

    Get PDF
    We study the peak-to-average power ratio (PAPR) problem in orthogonal frequency-division multiplexing (OFDM) systems. In conventional clipping and filtering based PAPR reduction techniques, clipping noise is allowed to spread over the whole active passband, thus degrading the transmit signal quality similarly at all active subcarriers. However, since modern radio networks support frequency-multiplexing of users and services with highly different quality-of-service expectations, clipping noise from PAPR reduction should be distributed unequally over the corresponding physical resource blocks (PRBs). To facilitate this, we present an efficient PAPR reduction technique, where clipping noise can be flexibly controlled and filtered inside the transmitter passband, allowing to control the transmitted signal quality per PRB. Numerical results are provided in 5G New Radio (NR) mobile network context, demonstrating the flexibility and efficiency of the proposed method.Comment: Accepted for publication as a Correspondence in the IEEE Transactions on Vehicular Technology in March 2019. This is the revised version of original manuscript, and it is in press at the momen

    A joint OFDM PAPR reduction and data decoding scheme with no SI estimation

    Get PDF
    The need for side information (SI) estimation poses a major challenge when selected mapping (SLM) is implemented to reduce peak-to-average power ratio (PAPR) in orthogonal frequency division multiplexing (OFDM) systems. Recent studies on pilot-assisted SI estimation procedures suggest that it is possible to determine the SI without the need for SI transmission. However, SI estimation adds to computational complexity and implementation challenges of practical SLM-OFDM receivers. To address these technical issues, this paper presents the use of a pilot-assisted cluster-based phase modulation and demodulation procedure called embedded coded modulation (ECM). The ECM technique uses a slightly modified SLM approach to reduce PAPR and to enable data recovery with no SI transmission and no SI estimation. In the presence of some non-linear amplifier distortion, it is shown that the ECM method achieves similar data decoding performance as conventional SLM-OFDM receiver that assumed a perfectly known SI and when the SI is estimated using a frequency-domain correlation approach. However, when the number of OFDM subcarriers is small and due to the clustering in ECM, the modified SLM produces a smaller PAPR reduction gain compared with conventional SLM

    A low complexity SI sequence estimator for pilot-aided SLM–OFDM systems

    Get PDF
    Selected mapping (SLM) is a well-known method for reducing peak-to-average power ratio (PAPR) in orthogonal frequency division multiplexing (OFDM) systems. However, as a consequence of implementing SLM, OFDM receivers often require estimation of some side information (SI) in order to achieve successful data recovery. Existing SI estimation schemes have very high computational complexities that put additional constraints on limited resources and increase system complexity. To address this problem, an alternative SLM approach that facilitates estimation of SI in the form of phase detection is presented. Simulations show that this modified SLM approach produces similar PAPR reduction performance when compared to conventional SLM. With no amplifier distortion and in the presence of non-linear power amplifier distortion, the proposed SI estimation approach achieves similar data recovery performance as both standard SLM–OFDM (with perfect SI estimation) and also when SI estimation is implemented through the use of an existing frequency-domain correlation (FDC) decision metric. In addition, the proposed method significantly reduces computational complexity compared with the FDC scheme and an ML estimation scheme

    Waveform Design for 5G and Beyond

    Get PDF
    5G is envisioned to improve major key performance indicators (KPIs), such as peak data rate, spectral efficiency, power consumption, complexity, connection density, latency, and mobility. This chapter aims to provide a complete picture of the ongoing 5G waveform discussions and overviews the major candidates. It provides a brief description of the waveform and reveals the 5G use cases and waveform design requirements. The chapter presents the main features of cyclic prefix-orthogonal frequency-division multiplexing (CP-OFDM) that is deployed in 4G LTE systems. CP-OFDM is the baseline of the 5G waveform discussions since the performance of a new waveform is usually compared with it. The chapter examines the essential characteristics of the major waveform candidates along with the related advantages and disadvantages. It summarizes and compares the key features of different waveforms.Comment: 22 pages, 21 figures, 2 tables; accepted version (The URL for the final version: https://onlinelibrary.wiley.com/doi/abs/10.1002/9781119333142.ch2

    An efficient reconfigurable peak cancellation model for peak to average power ratio reduction in orthogonal frequency division multiplexing communication system

    Get PDF
    The peak to average power ratio (PAPR) in orthogonal frequency division multiplexing (OFDM) communication system will be reduced using reconfigurable peak cancellation (RPC). RPC will also aid in improves the error vector magnitude (EVM) and reduces adjacent channel leakage ratio (ACLR) in OFDM communication system. The proposed RPC design methodology and practical implementation using field programmable gate array (FPGA) are discussed. The proposed RPC has been demonstrated using VIRTEX-7 XC7Z100 dual-core FPGA device with less hardware difficulty and minimum utilization of FPGA resources. The proposed RPC improves the efficiency of OFDM communication process by reducing complementary cumulative distribution function (CCDF) with respect to instantaneous power in dB. A comparison analysis was done between the existing selective mapping (SLM) method with proposed RPS method with respect FPGA resource utilization. The proposed RPC is implemented using VIRTEX-7 XC7Z100 dual-core FPGA device. Its effectively utilizing sub-carriers, fast Fourier transform (FFT) filter, bandwidth, and sampling frequency. Due to parallel switching operation, it reduces the PAPR, ACLR and improves EVM in OFDM signal with less hardware complexity

    Dual-Polarization OFDM-OQAM Wireless Communication System

    Full text link
    In this paper we describe the overall idea and results of a recently proposed radio access technique based on filter bank multicarrier (FBMC) communication system using two orthogonal polarizations: dual-polarization FBMC (DP-FBMC). Using this system we can alleviate the intrinsic interference problem in FBMC systems. This enables use of all the multicarrier techniques used in cyclic-prefix orthogonal frequency-division multiplexing (CP-OFDM) systems for channel equalization, multiple-input/multiple-output (MIMO) processing, etc., without using the extra processing required for conventional FBMC. DP-FBMC also provides other interesting advantages over CP-OFDM and FBMC such as more robustness in multipath fading channels, and more robustness to receiver carrier frequency offset (CFO) and timing offset (TO). For DP-FBMC we propose three different structures based on different multiplexing techniques in time, frequency, and polarization. We will show that one of these structures has exactly the same system complexity and equipment as conventional FBMC. In our simulation results DP-FBMC has better bit error ratio (BER) performance in dispersive channels. Based on these results, DP-FBMC has potential as a promising candidate for future wireless communication systems.Comment: 1.This paper is accepted to be published in IEEE Vehicular Technology Conference (VTC) FALL 2018. 2.In this new submitted version authors have revised the paper based on the VTC FALL reviewers comments. Therefore some typos have fixed and some results have change
    corecore