11,666 research outputs found

    Efficient delay-tolerant particle filtering

    Full text link
    This paper proposes a novel framework for delay-tolerant particle filtering that is computationally efficient and has limited memory requirements. Within this framework the informativeness of a delayed (out-of-sequence) measurement (OOSM) is estimated using a lightweight procedure and uninformative measurements are immediately discarded. The framework requires the identification of a threshold that separates informative from uninformative; this threshold selection task is formulated as a constrained optimization problem, where the goal is to minimize tracking error whilst controlling the computational requirements. We develop an algorithm that provides an approximate solution for the optimization problem. Simulation experiments provide an example where the proposed framework processes less than 40% of all OOSMs with only a small reduction in tracking accuracy

    Evaluating Data Assimilation Algorithms

    Get PDF
    Data assimilation leads naturally to a Bayesian formulation in which the posterior probability distribution of the system state, given the observations, plays a central conceptual role. The aim of this paper is to use this Bayesian posterior probability distribution as a gold standard against which to evaluate various commonly used data assimilation algorithms. A key aspect of geophysical data assimilation is the high dimensionality and low predictability of the computational model. With this in mind, yet with the goal of allowing an explicit and accurate computation of the posterior distribution, we study the 2D Navier-Stokes equations in a periodic geometry. We compute the posterior probability distribution by state-of-the-art statistical sampling techniques. The commonly used algorithms that we evaluate against this accurate gold standard, as quantified by comparing the relative error in reproducing its moments, are 4DVAR and a variety of sequential filtering approximations based on 3DVAR and on extended and ensemble Kalman filters. The primary conclusions are that: (i) with appropriate parameter choices, approximate filters can perform well in reproducing the mean of the desired probability distribution; (ii) however they typically perform poorly when attempting to reproduce the covariance; (iii) this poor performance is compounded by the need to modify the covariance, in order to induce stability. Thus, whilst filters can be a useful tool in predicting mean behavior, they should be viewed with caution as predictors of uncertainty. These conclusions are intrinsic to the algorithms and will not change if the model complexity is increased, for example by employing a smaller viscosity, or by using a detailed NWP model

    Sequential Monte Carlo smoothing with application to parameter estimation in non-linear state space models

    Full text link
    This paper concerns the use of sequential Monte Carlo methods (SMC) for smoothing in general state space models. A well-known problem when applying the standard SMC technique in the smoothing mode is that the resampling mechanism introduces degeneracy of the approximation in the path space. However, when performing maximum likelihood estimation via the EM algorithm, all functionals involved are of additive form for a large subclass of models. To cope with the problem in this case, a modification of the standard method (based on a technique proposed by Kitagawa and Sato) is suggested. Our algorithm relies on forgetting properties of the filtering dynamics and the quality of the estimates produced is investigated, both theoretically and via simulations.Comment: Published in at http://dx.doi.org/10.3150/07-BEJ6150 the Bernoulli (http://isi.cbs.nl/bernoulli/) by the International Statistical Institute/Bernoulli Society (http://isi.cbs.nl/BS/bshome.htm
    • …
    corecore