78 research outputs found

    Improved Parallel Algorithms for Spanners and Hopsets

    Full text link
    We use exponential start time clustering to design faster and more work-efficient parallel graph algorithms involving distances. Previous algorithms usually rely on graph decomposition routines with strict restrictions on the diameters of the decomposed pieces. We weaken these bounds in favor of stronger local probabilistic guarantees. This allows more direct analyses of the overall process, giving: * Linear work parallel algorithms that construct spanners with O(k)O(k) stretch and size O(n1+1/k)O(n^{1+1/k}) in unweighted graphs, and size O(n1+1/klogk)O(n^{1+1/k} \log k) in weighted graphs. * Hopsets that lead to the first parallel algorithm for approximating shortest paths in undirected graphs with O(m  polylog  n)O(m\;\mathrm{polylog}\;n) work

    Sparse Hopsets in Congested Clique

    Get PDF
    We give the first Congested Clique algorithm that computes a sparse hopset with polylogarithmic hopbound in polylogarithmic time. Given a graph G=(V,E)G=(V,E), a (β,ϵ)(\beta,\epsilon)-hopset HH with "hopbound" β\beta, is a set of edges added to GG such that for any pair of nodes uu and vv in GG there is a path with at most β\beta hops in GHG \cup H with length within (1+ϵ)(1+\epsilon) of the shortest path between uu and vv in GG. Our hopsets are significantly sparser than the recent construction of Censor-Hillel et al. [6], that constructs a hopset of size O~(n3/2)\tilde{O}(n^{3/2}), but with a smaller polylogarithmic hopbound. On the other hand, the previously known constructions of sparse hopsets with polylogarithmic hopbound in the Congested Clique model, proposed by Elkin and Neiman [10],[11],[12], all require polynomial rounds. One tool that we use is an efficient algorithm that constructs an \ell-limited neighborhood cover, that may be of independent interest. Finally, as a side result, we also give a hopset construction in a variant of the low-memory Massively Parallel Computation model, with improved running time over existing algorithms

    Towards Bypassing Lower Bounds for Graph Shortcuts

    Get PDF
    For a given (possibly directed) graph G, a hopset (a.k.a. shortcut set) is a (small) set of edges whose addition reduces the graph diameter while preserving desired properties from the given graph G, such as, reachability and shortest-path distances. The key objective is in optimizing the tradeoff between the achieved diameter and the size of the shortcut set (possibly also, the distance distortion). Despite the centrality of these objects and their thorough study over the years, there are still significant gaps between the known upper and lower bound results. A common property shared by almost all known shortcut lower bounds is that they hold for the seemingly simpler task of reducing the diameter of the given graph, D_G, by a constant additive term, in fact, even by just one! We denote such restricted structures by (D_G-1)-diameter hopsets. In this paper we show that this relaxation can be leveraged to narrow the current gaps, and in certain cases to also bypass the known lower bound results, when restricting to sparse graphs (with O(n) edges): - {Hopsets for Directed Weighted Sparse Graphs.} For every n-vertex directed and weighted sparse graph G with D_G ? n^{1/4}, one can compute an exact (D_G-1)-diameter hopset of linear size. Combining this with known lower bound results for dense graphs, we get a separation between dense and sparse graphs, hence shortcutting sparse graphs is provably easier. For reachability hopsets, we can provide (D_G-1)-diameter hopsets of linear size, for sparse DAGs, already for D_G ? n^{1/5}. This should be compared with the diameter bound of O?(n^{1/3}) [Kogan and Parter, SODA 2022], and the lower bound of D_G = n^{1/6} by [Huang and Pettie, {SIAM} J. Discret. Math. 2018]. - {Additive Hopsets for Undirected and Unweighted Graphs.} We show a construction of +24 additive (D_G-1)-diameter hopsets with linear number of edges for D_G ? n^{1/12} for sparse graphs. This bypasses the current lower bound of D_G = n^{1/6} obtained for exact (D_G-1)-diameter hopset by [HP\u2718]. For general graphs, the bound becomes D_G ? n^{1/6} which matches the lower bound of exact (D_G-1) hopsets implied by [HP\u2718]. We also provide new additive D-diameter hopsets with linear size, for any given diameter D. Altogether, we show that the current lower bounds can be bypassed by restricting to sparse graphs (with O(n) edges). Moreover, the gaps are narrowed significantly for any graph by allowing for a constant additive stretch

    A Unified Framework for Hopsets

    Get PDF
    Given an undirected graph G = (V,E), an (?,?)-hopset is a graph H = (V,E\u27), so that adding its edges to G guarantees every pair has an ?-approximate shortest path that has at most ? edges (hops), that is, d_G(u,v) ? d_{G?H}^(?)(u,v) ? ?? d_G(u,v). Given the usefulness of hopsets for fundamental algorithmic tasks, several different algorithms and techniques were developed for their construction, for various regimes of the stretch parameter ?. In this work we devise a single algorithm that can attain all state-of-the-art hopsets for general graphs, by choosing the appropriate input parameters. In fact, in some cases it also improves upon the previous best results. We also show a lower bound on our algorithm. In [Ben-Levy and Parter, 2020], given a parameter k, a (O(k^?),O(k^{1-?}))-hopset of size O?(n^{1+1/k}) was shown for any n-vertex graph and parameter 0 < ? < 1, and they asked whether this result is best possible. We resolve this open problem, showing that any (?,?)-hopset of size O(n^{1+1/k}) must have ??? ? ?(k)

    Almost Shortest Paths with Near-Additive Error in Weighted Graphs

    Get PDF
    Let G=(V,E,w)G=(V,E,w) be a weighted undirected graph with nn vertices and mm edges, and fix a set of ss sources SVS\subseteq V. We study the problem of computing {\em almost shortest paths} (ASP) for all pairs in S×VS \times V in both classical centralized and parallel (PRAM) models of computation. Consider the regime of multiplicative approximation of 1+ϵ1+\epsilon, for an arbitrarily small constant ϵ>0\epsilon > 0 . In this regime existing centralized algorithms require Ω(min{Es,nω})\Omega(\min\{|E|s,n^\omega\}) time, where ω<2.372\omega < 2.372 is the matrix multiplication exponent. Existing PRAM algorithms with polylogarithmic depth (aka time) require work Ω(min{Es,nω})\Omega(\min\{|E|s,n^\omega\}). Our centralized algorithm has running time O((m+ns)nρ)O((m+ ns)n^\rho), and its PRAM counterpart has polylogarithmic depth and work O((m+ns)nρ)O((m + ns)n^\rho), for an arbitrarily small constant ρ>0\rho > 0. For a pair (s,v)S×V(s,v) \in S\times V, it provides a path of length d^(s,v)\hat{d}(s,v) that satisfies d^(s,v)(1+ϵ)dG(s,v)+βW(s,v)\hat{d}(s,v) \le (1+\epsilon)d_G(s,v) + \beta \cdot W(s,v), where W(s,v)W(s,v) is the weight of the heaviest edge on some shortest svs-v path. Hence our additive term depends linearly on a {\em local} maximum edge weight, as opposed to the global maximum edge weight in previous works. Finally, our β=(1/ρ)O(1/ρ)\beta = (1/\rho)^{O(1/\rho)}. We also extend a centralized algorithm of Dor et al. \cite{DHZ00}. For a parameter κ=1,2,\kappa = 1,2,\ldots, this algorithm provides for {\em unweighted} graphs a purely additive approximation of 2(κ1)2(\kappa -1) for {\em all pairs shortest paths} (APASP) in time O~(n2+1/κ)\tilde{O}(n^{2+1/\kappa}). Within the same running time, our algorithm for {\em weighted} graphs provides a purely additive error of 2(κ1)W(u,v)2(\kappa - 1) W(u,v), for every vertex pair (u,v)(V2)(u,v) \in {V \choose 2}, with W(u,v)W(u,v) defined as above. On the way to these results we devise a suit of novel constructions of spanners, emulators and hopsets

    Massively Parallel Approximate Distance Sketches

    Get PDF
    Data structures that allow efficient distance estimation (distance oracles, distance sketches, etc.) have been extensively studied, and are particularly well studied in centralized models and classical distributed models such as CONGEST. We initiate their study in newer (and arguably more realistic) models of distributed computation: the Congested Clique model and the Massively Parallel Computation (MPC) model. We provide efficient constructions in both of these models, but our core results are for MPC. In MPC we give two main results: an algorithm that constructs stretch/space optimal distance sketches but takes a (small) polynomial number of rounds, and an algorithm that constructs distance sketches with worse stretch but that only takes polylogarithmic rounds. Along the way, we show that other useful combinatorial structures can also be computed in MPC. In particular, one key component we use to construct distance sketches are an MPC construction of the hopsets of [Elkin and Neiman, 2016]. This result has additional applications such as the first polylogarithmic time algorithm for constant approximate single-source shortest paths for weighted graphs in the low memory MPC setting
    corecore