171 research outputs found

    Satellite Navigation for the Age of Autonomy

    Full text link
    Global Navigation Satellite Systems (GNSS) brought navigation to the masses. Coupled with smartphones, the blue dot in the palm of our hands has forever changed the way we interact with the world. Looking forward, cyber-physical systems such as self-driving cars and aerial mobility are pushing the limits of what localization technologies including GNSS can provide. This autonomous revolution requires a solution that supports safety-critical operation, centimeter positioning, and cyber-security for millions of users. To meet these demands, we propose a navigation service from Low Earth Orbiting (LEO) satellites which deliver precision in-part through faster motion, higher power signals for added robustness to interference, constellation autonomous integrity monitoring for integrity, and encryption / authentication for resistance to spoofing attacks. This paradigm is enabled by the 'New Space' movement, where highly capable satellites and components are now built on assembly lines and launch costs have decreased by more than tenfold. Such a ubiquitous positioning service enables a consistent and secure standard where trustworthy information can be validated and shared, extending the electronic horizon from sensor line of sight to an entire city. This enables the situational awareness needed for true safe operation to support autonomy at scale.Comment: 11 pages, 8 figures, 2020 IEEE/ION Position, Location and Navigation Symposium (PLANS

    Undifferenced and Uncombined GNSS Time Transfer and its Space Applications

    Get PDF
    This thesis presents a framework for developing a state-of-the-art undifferenced and uncombined (UDUC) time transfer technique for space applications. It addresses challenges in GNSS time transfer, such as multi-frequency signal modelling, satellite clock estimation, and hardware delay variations. The thesis introduces the UDUC POD method for GNSS time transfer in space and explores the feasibility of constructing a LEO-based space-time reference. This PhD dissertation is among the first to investigate the UDUC GNSS time transfer

    GNSS Precise Point Positioning Using Low-Cost GNSS Receivers

    Get PDF
    There are positioning techniques available such as Real-Time Kinematic (RTK) which allow user to obtain few cm-level positioning, but require infrastructure cost, i.e., setting up local or regional networks of base stations to provide corrections. Precise Point Positioning (PPP) using dual-frequency receivers is a popular standalone technique to process GNSS data by applying precise satellite orbit and clock correction along with other corrections to produce cm to dm-level positioning. At the time of writing, almost all low-cost and ultra-low-cost (few $10s) GNSS units are single-frequency chips. Single-frequency PPP poses challenges in terms of effectively mitigating ionospheric delay and the multipath, as there is no second frequency to remove the ionospheric delay. The quality of measurements also deteriorates drastically from geodetic-grade to ultra-low-cost hardware. Given these challenges, this study attempts to improve the performance of single-frequency PPP using geodetic-grade hardware, and to capture the potential positioning performance of this new generation of low-cost and ultra-low-cost GNSS chips. Raw measurement analysis and post-fit residuals show that measurements from cellphones are more prone to multipath compared to signals from geodetic-grade and low-cost receivers. Horizontal accuracy of a few-centimetres is demonstrated with geodetic-grade hardware. Whereas accuracy of few-decimetres is observed from low-cost and ultra-low-cost GNSS hardware. With multi-constellation processing, improvements in accuracy and reductions in convergence time over initial 60 minutes period, are also demonstrated with three different set of GNSS hardware. Horizontal and vertical rms of 37 cm and 51 cm, respectively, is achieved using a cellphone

    Improving Reliability and Assessing Performance of Global Navigation Satellite System Precise Point Positioning Ambiguity Resolution

    Get PDF
    Conventional Precise Point Positioning (PPP) has always required a relatively long initialization period (few tens of minutes at least) for the carrier-phase ambiguities to converge to constant values and for the solution to reach its optimal precision. The classical PPP convergence period is primarily caused by the estimation of the carrier-phase ambiguity from the relatively noisy pseudoranges and the estimation of atmospheric delay. If the underlying integer nature of the ambiguity is known, it can be resolved, thereby reducing the convergence time of conventional PPP. To recover the underlying integer nature of the carrier-phase ambiguities, different strategies for mitigating the satellite and receiver dependent equipment delays have been developed, and products made publicly available to enable ambiguity resolution without any baseline restrictions. There has been limited research within the scope of interoperability of the products, combining the products to improve reliability and assessment of ambiguity resolution within the scope of being an integrity indicator. This study seeks to develop strategies to enable each of these and examine their feasibility. The advantage of interoperability of the different PPP ambiguity resolution (PPP-AR) products would be to permit the PPP user to transform independently generated PPP-AR products to obtain multiple fixed solutions of comparable precision and accuracy. The ability to provide multiple solutions would increase the reliability of the solution for, e.g., real-time processing: if there were an outage in the generation of the PPP-AR products, the user could instantly switch streams to a different provider. The satellite clock combinations routinely produced within the International GNSS Service (IGS) currently disregard that analysis centers (ACs) provide products which enable ambiguity resolution. Users have been expected to choose either an IGS product which is a combined product from multiple ACs or select an individual AC solution which provides products that enable PPP-AR. The goal of the novel research presented was to develop and test a robust satellite clock combination preserving the integer nature of the carrier-phase ambiguities at the user end. mm-level differences were noted, which was expected as the strength lies mainly in its reliability and stable median performance and the combined product is better than or equivalent to any single ACs product in the combination process. As have been shown in relative positioning and PPP-AR, ambiguity resolution is critical for enabling cm-level positioning. However, what if specifications where at the few dm-level, such as 10 cm and 20 cm horizontal what role does ambiguity resolution play? The role of ambiguity resolution relies primarily on what are the user specifications. If the user specifications are at the few cm-level, ambiguity resolution is an asset as it improves convergence and solution stability. Whereas, if the users specification is at the few dm-level, ambiguity resolution offers limited improvement over the float solution. If the user has the resources to perform ambiguity resolution, even when the specifications are at the few dm-level, it should be utilized

    PERFORMANCE EVALUATION OF LOW-COST PRECISION POSITIONING METHODS FOR FUTURE PORT APPLICATIONS

    Get PDF
    In recent times, a lot of research has been conducted to improve the accuracy of various positioning systems. The motivation behind this trend is to ensure high quality GNSS services for various applications. In particular, emphasis has been placed on improving the level of accuracy of consumer grade GNSS receivers. Significant improvements in the quality of signal reception of these receivers would enable low-cost solutions for asset management in for example, harbor areas. Research in Receiver Autonomous Integrity Monitoring - Fault Detection and Exclusion (RAIM-FDE) algorithms give users the ability to exclude satellites with degraded signals, hereby improving the performance of the GNSS solution. This research investigates and evaluates the performance of various customer grade GNSS positioning systems intended for port applications. Various high precision techniques such as Precise Point Positioning and Real-Time Kinematic were conducted and accuracy levels were noted on Multi-band receivers, Single frequency receivers, and GNSS-enabled smartphone. Our final conclusion suggests optimal low-cost GNSS solutions for asset monitoring and management

    Automotive applications of high precision GNSS

    Get PDF
    This thesis aims to show that Global Navigation Satellite Systems (GNSS) positioning can play a significant role in the positioning systems of future automotive applications. This is through the adoption of state-of-the-art GNSS positioning technology and techniques, and the exploitation of the rapidly developing vehicle-to-vehicle concept. The merging together of these two developments creates greater performance than can be achieved separately. The original contribution of this thesis comes from this combination: Through the introduction of the Pseudo-VRS concept. Pseudo-VRS uses the princples of Network Real Time Kinematic (N-RTK) positioning to share GNSS information between vehicles, which enables absolute vehicle positioning. Pseudo-VRS is shown to improve the performance of high precision GNSS positioning for road vehicles, through the increased availability of GNSS correction messages and the rapid resolution of the N-RTK fixed solution. Positioning systems in the automotive sector are dominated by satellite-based solutions provided by GNSS. This has been the case since May 2001, when the United States Department of Defense switched off Selective Availability, enabling significantly improved positioning performance for civilian users. The average person most frequently encounters GNSS when using electronic personal navigation devices. The Sat Nav or GPS Navigator is ubiquitous in modern societies, where versions can be found on nomadic devices such as smartphones and dedicated personal navigation devices, or built in to the dashboards of vehicles. Such devices have been hugely successful due to their intrinsic ability to provide position information anywhere in the world with an accuracy of approximately 10 metres, which has proved ideal for general navigation applications. There are a few well known limitations of GNSS positioning, including anecdotal evidence of incorrect navigation advice for personal navigation devices, but these are minor compared to the overall positioning performance. Through steady development of GNSS positioning devices, including the integration of other low cost sensors (for instance, wheel speed or odometer sensors in vehicles), and the development of robust map matching algorithms, the performance of these devices for navigation applications is truly incredible. However, when tested for advanced automotive applications, the performance of GNSS positioning devices is found to be inadequate. In particular, in the most advanced fields of research such as autonomous vehicle technology, GNSS positioning devices are relegated to a secondary role, or often not used at all. They are replaced by terrestrial sensors that provide greater situational awareness, such as radar and lidar. This is due to the high performance demand of such applications, including high positioning accuracy (sub-decimetre), high availability and continuity of solutions (100%), and high integrity of the position information. Low-cost GNSS receivers generally do not meet such requirements. This could be considered an enormous oversight, as modern GNSS positioning technology and techniques have significantly improved satellite-based positioning performance. Other non-GNSS techniques also have their limitations that GNSS devices can minimise or eliminate. For instance, systems that rely on situational awareness require accurate digital maps of their surroundings as a reference. GNSS positioning can help to gather this data, provide an input, and act as a fail-safe in the event of digital map errors. It is apparent that in order to deliver advanced automotive applications - such as semi- or fully-autonomous vehicles - there must be an element of absolute positioning capability. Positioning systems will work alongside situational awareness systems to enable the autonomous vehicles to navigate through the real world. A strong candidate for the positioning system is GNSS positioning. This thesis builds on work already started by researchers at the University of Nottingham, to show that N-RTK positioning is one such technique. N-RTK can provide sub-decimetre accuracy absolute positioning solutions, with high availability, continuity, and integrity. A key component of N-RTK is the availability of real-time GNSS correction data. This is typically delivered to the GNSS receiver via mobile internet (for a roving receiver). This can be a significant limitation, as it relies on the performance of the mobile communications network, which can suffer from performance degradation during dynamic operation. Mobile communications systems are expected to improve significantly over the next few years, as consumers demand faster download speeds and wider availability. Mobile communications coverage already covers a high percentage of the population, but this does not translate into a high percentage of a country's geography. Pockets of poor coverage, often referred to as notspots, are widespread. Many of these notspots include the transportation infrastructure. The vehicle-to-vehicle concept has made significant forward steps in the last few years. Traditionally promoted as a key component of future automotive safety applications, it is now driven primarily by increased demand for in-vehicle infotainment. The concept, which shares similarities with the Internet of Things and Mobile Ad-hoc Networks, relies on communication between road vehicles and other road agents (such as pedestrians and road infrastructure). N-RTK positioning can take advantage of this communication link to minimise its own communications-related limitations. Sharing GNSS information between local GNSS receivers enables better performance of GNSS positioning, based on the principles of differential GNSS and N-RTK positioning techniques. This advanced concept is introduced and tested in this thesis. The Pseudo VRS concept follows the protocols and format of sharing GNSS data used in N-RTK positioning. The technique utilises the latest GNSS receiver design, including multiple frequency measurements and high quality antennas

    International GNSS Service: Technical Report 2021

    Get PDF
    Applications of the Global Navigation Satellite Systems (GNSS) to Earth Sciences are numerous. The International GNSS Service (IGS), a voluntary federation of government agencies, universities and research institutions, combines GNSS resources and expertise to provide the highest–quality GNSS data, products, and services in order to support high–precision applications for GNSS–related research and engineering activities. This IGS Technical Report 2021 includes contributions from the IGS Governing Board, the Central Bureau, Analysis Centers, Data Centers, station and network operators, working groups, pilot projects, and others highlighting status and important activities, changes and results that took place and were achieved during 2021

    Antenna Working Group Technical Report 2018

    Get PDF

    International GNSS Service: Technical Report 2018

    Get PDF

    Automotive applications of high precision GNSS

    Get PDF
    This thesis aims to show that Global Navigation Satellite Systems (GNSS) positioning can play a significant role in the positioning systems of future automotive applications. This is through the adoption of state-of-the-art GNSS positioning technology and techniques, and the exploitation of the rapidly developing vehicle-to-vehicle concept. The merging together of these two developments creates greater performance than can be achieved separately. The original contribution of this thesis comes from this combination: Through the introduction of the Pseudo-VRS concept. Pseudo-VRS uses the princples of Network Real Time Kinematic (N-RTK) positioning to share GNSS information between vehicles, which enables absolute vehicle positioning. Pseudo-VRS is shown to improve the performance of high precision GNSS positioning for road vehicles, through the increased availability of GNSS correction messages and the rapid resolution of the N-RTK fixed solution. Positioning systems in the automotive sector are dominated by satellite-based solutions provided by GNSS. This has been the case since May 2001, when the United States Department of Defense switched off Selective Availability, enabling significantly improved positioning performance for civilian users. The average person most frequently encounters GNSS when using electronic personal navigation devices. The Sat Nav or GPS Navigator is ubiquitous in modern societies, where versions can be found on nomadic devices such as smartphones and dedicated personal navigation devices, or built in to the dashboards of vehicles. Such devices have been hugely successful due to their intrinsic ability to provide position information anywhere in the world with an accuracy of approximately 10 metres, which has proved ideal for general navigation applications. There are a few well known limitations of GNSS positioning, including anecdotal evidence of incorrect navigation advice for personal navigation devices, but these are minor compared to the overall positioning performance. Through steady development of GNSS positioning devices, including the integration of other low cost sensors (for instance, wheel speed or odometer sensors in vehicles), and the development of robust map matching algorithms, the performance of these devices for navigation applications is truly incredible. However, when tested for advanced automotive applications, the performance of GNSS positioning devices is found to be inadequate. In particular, in the most advanced fields of research such as autonomous vehicle technology, GNSS positioning devices are relegated to a secondary role, or often not used at all. They are replaced by terrestrial sensors that provide greater situational awareness, such as radar and lidar. This is due to the high performance demand of such applications, including high positioning accuracy (sub-decimetre), high availability and continuity of solutions (100%), and high integrity of the position information. Low-cost GNSS receivers generally do not meet such requirements. This could be considered an enormous oversight, as modern GNSS positioning technology and techniques have significantly improved satellite-based positioning performance. Other non-GNSS techniques also have their limitations that GNSS devices can minimise or eliminate. For instance, systems that rely on situational awareness require accurate digital maps of their surroundings as a reference. GNSS positioning can help to gather this data, provide an input, and act as a fail-safe in the event of digital map errors. It is apparent that in order to deliver advanced automotive applications - such as semi- or fully-autonomous vehicles - there must be an element of absolute positioning capability. Positioning systems will work alongside situational awareness systems to enable the autonomous vehicles to navigate through the real world. A strong candidate for the positioning system is GNSS positioning. This thesis builds on work already started by researchers at the University of Nottingham, to show that N-RTK positioning is one such technique. N-RTK can provide sub-decimetre accuracy absolute positioning solutions, with high availability, continuity, and integrity. A key component of N-RTK is the availability of real-time GNSS correction data. This is typically delivered to the GNSS receiver via mobile internet (for a roving receiver). This can be a significant limitation, as it relies on the performance of the mobile communications network, which can suffer from performance degradation during dynamic operation. Mobile communications systems are expected to improve significantly over the next few years, as consumers demand faster download speeds and wider availability. Mobile communications coverage already covers a high percentage of the population, but this does not translate into a high percentage of a country's geography. Pockets of poor coverage, often referred to as notspots, are widespread. Many of these notspots include the transportation infrastructure. The vehicle-to-vehicle concept has made significant forward steps in the last few years. Traditionally promoted as a key component of future automotive safety applications, it is now driven primarily by increased demand for in-vehicle infotainment. The concept, which shares similarities with the Internet of Things and Mobile Ad-hoc Networks, relies on communication between road vehicles and other road agents (such as pedestrians and road infrastructure). N-RTK positioning can take advantage of this communication link to minimise its own communications-related limitations. Sharing GNSS information between local GNSS receivers enables better performance of GNSS positioning, based on the principles of differential GNSS and N-RTK positioning techniques. This advanced concept is introduced and tested in this thesis. The Pseudo VRS concept follows the protocols and format of sharing GNSS data used in N-RTK positioning. The technique utilises the latest GNSS receiver design, including multiple frequency measurements and high quality antennas
    • …
    corecore