13 research outputs found

    Fibres optiques amplificatrices pompées par la gaine pour les réseaux de communication

    Get PDF
    Avec la demande croissante en matière de consommation Internet, une nouvelle génération de systèmes de communication est présentement en cours de développement. L'une des caractéristiques de cette nouvelle génération est qu'elle exploite le multiplexage spatial afin d'augmenter la capacité et le niveau d'intégration des réseaux. Dans ce contexte, il est judicieux de s'intéresser à la place que pourrait occuper le multiplexage spatial dans la technologie de fibres amplificatrices. À court terme, le multiplexage spatial pourrait être utilisé conjointement avec le pompage par la gaine afin de diminuer la complexité et le nombre de composants dans les nœuds des réseaux de communication ayant de nombreux ports d'entrée et de sortie à amplifier à un même endroit, en permettant l'amplification simultanée des signaux présents dans plusieurs cœurs d'une même fibre optique et à partir d'une seule source de pompage. Cependant, avec le pompage par la gaine, la puissance pompe est répartie sur l'entièreté de la gaine, menant ainsi à une faible intensité lumineuse de la pompe, ce qui a pour effet d'accentuer les effets de saturation de l'amplification, les rendant ainsi moins compatibles avec les réseaux reconfigurables. Une application alternative pour le pompage par la gaine est l'amplification de signaux dans la bande L. En effet, il s'agit d'une application où les niveaux d'inversion de population d'ions d'erbium requis sont plus bas, ce qui est compatible avec la forte saturation propre au pompage par la gaine. Dans ce contexte, cette thèse vise à explorer l'intérêt du développement de fibres amplificatrices pompées par la gaine pour les réseaux de communication et à proposer des améliorations concrètes relatives à cette technologie. D'abord, le chapitre 1 vise à déterminer si, et sous quelles conditions, le co-dopage à l'erbium-ytterbium est préférable au dopage à l'erbium seul dans les fibres amplificatrices pompées par la gaine qui amplifient la bande C dans les réseaux de communication. Ce chapitre permet de conclure que le co-dopage à l'erbium-ytterbium est généralement uniquement préférable à l'erbium seul lorsque l'amplificateur doit être opéré en régime de forte saturation ou lorsque la région spectrale couverte par l'amplificateur ne s'étend pas en bas de 1535 nm. Ensuite, le chapitre 2 étudie l'impact de la géométrie de distribution des ions d'erbium sur le gain et la compression du gain dans une fibre amplificatrice pompée par la gaine. Plus spécifiquement, le dopage en anneau autour du cœur est comparé au dopage uniforme dans le cœur et à un profil de dopant qui couvrirait à la fois le cœur et une région périphérique du cœur afin de couvrir presque entièrement le mode fondamental. Ce chapitre permet de conclure que, parmi ces géométries, le dopage en anneau autour du cœur est celui qui permet de minimiser les effets de saturation. Puis, le chapitre 3 présente une nouvelle méthode de couplage latéral de la pompe dans la gaine, sans fusion et sans altération du signal, qui permet d'augmenter l'efficacité de couplage de la pompe significativement par rapport aux méthodes alternatives sans fusion. Les chapitres 4 à 6 présentent un processus d'optimisation ayant pour but d'utiliser les analyses et développements des chapitres 1 à 3 pour concevoir un amplificateur à fibre à cœurs multiples répondant de façon optimale aux spécifications requises pour un amplificateur s'insérant dans un nœud de réseau reconfigurable et couvrant la bande C. Le chapitre 4 présente la fabrication et la caractérisation de la première fibre amplificatrice à cœurs multiples utilisant une géométrie de distribution des ions actifs en anneau autour de chacun des cœurs. Ses performances s'avèrent être décevantes dû au taux élevé d'agrégats d'ions d'erbium et à la présence d'ASE dans la gaine. Dans le chapitre 5, un nouveau design de cœur est testé, en fabriquant une fibre amplificatrice à cœur unique, afin de corriger les deux principales lacunes de la fibre précédente. Dans le chapitre 6, le design présenté au chapitre 5 est réutilisé dans une seconde itération de fibre amplificatrice à cœurs multiples. Cette fibre est caractérisée en injectant de la puissance pompe dans la gaine et de la puissance signal simultanément dans tous les cœurs à l'aide d'un fan-in/fan-out pour mesurer le gain, le facteur de bruit ainsi que les variations de gain entre les cœurs. Le chapitre 7 explore une application alternative du pompage par la gaine en investiguant l'utilisation de couches concentriques hétérogènes de dopage à l'erbium seul et de co-dopage à l'erbium-ytterbium afin de maximiser l'efficacité de conversion de puissance dans les fibres amplificatrices pompées par la gaine et couvrant la bande L. Le chapitre 8 démontre qu'il est possible de recycler la puissance pompe résiduelle à la sortie d'une fibre amplificatrice multicœur pompée par la gaine en y inscrivant un réseau de Bragg intra-gaine. Cette méthode a l'avantage de ne pas nécessiter l'ajout de composants additionnels, à l'entrée et à la sortie, qui peuvent induire des pertes d'insertion. Finalement, le chapitre 9 est une discussion générale sur les progrès effectués dans le cadre de cette thèse ainsi que les défis qui restent à surmonter par rapport à l'utilisation des fibres amplificatrices pompées par la gaine dans les réseaux de communication

    High-multiplicity space-division multiplexed transmission systems

    Get PDF

    High-multiplicity space-division multiplexed transmission systems

    Get PDF

    Roadmap of optical communications

    Get PDF
    © 2016 IOP Publishing Ltd. Lightwave communications is a necessity for the information age. Optical links provide enormous bandwidth, and the optical fiber is the only medium that can meet the modern society's needs for transporting massive amounts of data over long distances. Applications range from global high-capacity networks, which constitute the backbone of the internet, to the massively parallel interconnects that provide data connectivity inside datacenters and supercomputers. Optical communications is a diverse and rapidly changing field, where experts in photonics, communications, electronics, and signal processing work side by side to meet the ever-increasing demands for higher capacity, lower cost, and lower energy consumption, while adapting the system design to novel services and technologies. Due to the interdisciplinary nature of this rich research field, Journal of Optics has invited 16 researchers, each a world-leading expert in their respective subfields, to contribute a section to this invited review article, summarizing their views on state-of-the-art and future developments in optical communications

    Glassy Materials Based Microdevices

    Get PDF
    Microtechnology has changed our world since the last century, when silicon microelectronics revolutionized sensor, control and communication areas, with applications extending from domotics to automotive, and from security to biomedicine. The present century, however, is also seeing an accelerating pace of innovation in glassy materials; as an example, glass-ceramics, which successfully combine the properties of an amorphous matrix with those of micro- or nano-crystals, offer a very high flexibility of design to chemists, physicists and engineers, who can conceive and implement advanced microdevices. In a very similar way, the synthesis of glassy polymers in a very wide range of chemical structures offers unprecedented potential of applications. The contemporary availability of microfabrication technologies, such as direct laser writing or 3D printing, which add to the most common processes (deposition, lithography and etching), facilitates the development of novel or advanced microdevices based on glassy materials. Biochemical and biomedical sensors, especially with the lab-on-a-chip target, are one of the most evident proofs of the success of this material platform. Other applications have also emerged in environment, food, and chemical industries. The present Special Issue of Micromachines aims at reviewing the current state-of-the-art and presenting perspectives of further development. Contributions related to the technologies, glassy materials, design and fabrication processes, characterization, and, eventually, applications are welcome

    Optical angular momentum in air core fibers

    Get PDF
    As data consumption continues to grow, the backbone of the internet, comprising single mode fiber (SMF)-based infrastructure, is fundamentally limited by nonlinear optical effects. One strategy to address this bottleneck, space division multiplexing (SDM), utilizes multiple modes in a single fiber as independent data channels. Orbital Angular Momentum (OAM) carrying modes, which have twisting phase fronts tracing out helices as the beams propagate, have recently received tremendous attention as a means of achieving low-crosstalk, digital signal processing (DSP)-free transmission with enhanced capacity. Terabit-scale transmission using 4 OAM modes over 1.1km has been demonstrated, but questions remain – how many OAM modes can fibers support, and how stable is propagation over longer lengths? In this thesis, we investigate angular momentum carrying modes in a novel class of fibers featuring an air core. We find that high-order OAM states, although arising in degenerate pairs, counterintuitively resist mode coupling due to OAM conservation, pointing to a unique stability inherent to OAM modes in fibers. We achieve OAM propagation up to 13.4km lengths, and achieve mode purities greater than 15dB at data-center length-scales. We use these fibers to transmit wavelength-division multiplexed data with 25 GHz channel spacing, 10 GBaud rates and quadrature-phase-shift keyed modulation formats in 12 modes simultaneously, over 1.2km, and over a large number of wavelengths across the C-band (1530-1565nm). However, transmission over every mode in every channel of the C-band was prevented by the accidental degeneracy of OAM states with undesired modes. To achieve a larger ensemble of stable modes over a larger wavelength range, we study new fiber designs that avoid this accidental degeneracy problem. We find that the most scalable modal eigenbasis is a set of states that carry non-integer amounts of average OAM, also called spin-orbit coupled modes in analogy with similar effects observed in atomic physics. We demonstrate excitation and transmission of 24 such modes over device lengths (10m). The achievement of a record number of uncoupled modes in fibers confirms the viability of angular momentum states as data carriers, and potential applications include links in data centers, high capacity optical amplifiers, and quantum communications links.2017-09-09T00:00:00

    Space-division Multiplexed Optical Transmission enabled by Advanced Digital Signal Processing

    Get PDF

    Towards a fully integrated quantum optic circuit

    Get PDF

    Techniques émergentes de codage espace-temps pour les systèmes de communications optiques

    Get PDF
    Research in the field of optical fiber communications is advancing at a rapid pace in order to meet the growing needs for higher data rates. The main driving forces behind these advancements are the availability of multiple degrees of freedom in the optical fiber allowing for multiplexing more data: amplitude, phase and polarization state of the optical field, along with time and wavelength are already used in the deployed optical transmission systems. Yet, these systems are approaching their theoretical capacity limits and an extra dimension "space" is investigated to achieve the next capacity leap. However, packing several data channels in the same medium brings with it differential impairments and crosstalk that can seriously deteriorate the performance of the system. In this thesis, we focus on recent optical MIMO schemes based on polarization division multiplexing (PDM) and space division multiplexing (SDM). In both, we assess the performance penalties induced by non-unitary crosstalk and loss disparities among the channels arising from imperfections in the used optical components (fibers, amplifiers, multiplexers...), and suggest novel MIMO coding techniques known as Space-Time (ST) codes, initially designed for wireless multi-antenna channels, to mitigate them.La recherche dans le domaine des communications sur fibres optiques avance à un rythme rapide afin de satisfaire des demandes croissantes de communications à débits élevés. Les principaux moteurs de ces avancements sont la multitude de degrés de liberté offerts par la fibre permettant ainsi la transmission de plus de données: l'amplitude, la phase et l'état de polarisation du champ optique, ainsi que le temps et la longueur d'onde sont déjà utilisés dans les systèmes de transmission optique déployés. Pourtant, ces systèmes s'approchent de leur limite fondamentale de capacité et un degré supplémentaire: "la dimension spatiale" est étudié pour réaliser un saut qualitatif majeur en termes de capacité de transmission. Cependant, l'insertion de plusieurs flux de données dans le même canal de propagation induit également des pertes différentielles et de la diaphonie entre les flux, ce qui peut fortement réduire la qualité du système de transmission. Dans cette thèse, nous nous concentrons sur les systèmes de transmission optique de type MIMO basés sur un multiplexage en polarisation ou en modes de propagation. Dans les deux cas, nous évaluons la dégradation de la performance provoquée par une interférence inter-canaux non-unitaire et des disparités de gain entre les canaux engendrées par des imperfections dans les composants optiques utilisés (fibres, amplificateurs, multiplexeurs...), et proposons pour les combattre, de nouvelles techniques de codage pour les systèmes MIMO nommées "codes Spatio-Temporels" (ST), préalablement conçues pour les systèmes radios multi-antennaires

    Cumulative index to NASA Tech Briefs, 1986-1990, volumes 10-14

    Get PDF
    Tech Briefs are short announcements of new technology derived from the R&D activities of the National Aeronautics and Space Administration. These briefs emphasize information considered likely to be transferrable across industrial, regional, or disciplinary lines and are issued to encourage commercial application. This cumulative index of Tech Briefs contains abstracts and four indexes (subject, personal author, originating center, and Tech Brief number) and covers the period 1986 to 1990. The abstract section is organized by the following subject categories: electronic components and circuits, electronic systems, physical sciences, materials, computer programs, life sciences, mechanics, machinery, fabrication technology, and mathematics and information sciences
    corecore