106,543 research outputs found

    Improved Online Algorithm for Weighted Flow Time

    Full text link
    We discuss one of the most fundamental scheduling problem of processing jobs on a single machine to minimize the weighted flow time (weighted response time). Our main result is a O(logP)O(\log P)-competitive algorithm, where PP is the maximum-to-minimum processing time ratio, improving upon the O(log2P)O(\log^{2}P)-competitive algorithm of Chekuri, Khanna and Zhu (STOC 2001). We also design a O(logD)O(\log D)-competitive algorithm, where DD is the maximum-to-minimum density ratio of jobs. Finally, we show how to combine these results with the result of Bansal and Dhamdhere (SODA 2003) to achieve a O(log(min(P,D,W)))O(\log(\min(P,D,W)))-competitive algorithm (where WW is the maximum-to-minimum weight ratio), without knowing P,D,WP,D,W in advance. As shown by Bansal and Chan (SODA 2009), no constant-competitive algorithm is achievable for this problem.Comment: 20 pages, 4 figure

    Algorithms for Minimizing Weighted Flow Time

    Get PDF
    We study the problem of minimizing weighted flow time on a single machine in the preemptive setting. We present an O(log2 P)-competitive semi-online algorithm where P is the ratio of the maximum and minimum processing times of jobs in the system. In the offline setting we show that a (2 + ε)-approximation is achievable in quasi-polynomial time. These are the first non-trivial results for the weighted versions of minimizing flow time. For multiple machines we show that no competitive randomized online algorithm exists for weighted flow time. We also present an improved online algorithm for minimizing total stretch (a special case of weighted flow time) on multiple machines

    The Geometry of Scheduling

    Full text link
    We consider the following general scheduling problem: The input consists of n jobs, each with an arbitrary release time, size, and a monotone function specifying the cost incurred when the job is completed at a particular time. The objective is to find a preemptive schedule of minimum aggregate cost. This problem formulation is general enough to include many natural scheduling objectives, such as weighted flow, weighted tardiness, and sum of flow squared. Our main result is a randomized polynomial-time algorithm with an approximation ratio O(log log nP), where P is the maximum job size. We also give an O(1) approximation in the special case when all jobs have identical release times. The main idea is to reduce this scheduling problem to a particular geometric set-cover problem which is then solved using the local ratio technique and Varadarajan's quasi-uniform sampling technique. This general algorithmic approach improves the best known approximation ratios by at least an exponential factor (and much more in some cases) for essentially all of the nontrivial common special cases of this problem. Our geometric interpretation of scheduling may be of independent interest.Comment: Conference version in FOCS 201

    The map equation

    Full text link
    Many real-world networks are so large that we must simplify their structure before we can extract useful information about the systems they represent. As the tools for doing these simplifications proliferate within the network literature, researchers would benefit from some guidelines about which of the so-called community detection algorithms are most appropriate for the structures they are studying and the questions they are asking. Here we show that different methods highlight different aspects of a network's structure and that the the sort of information that we seek to extract about the system must guide us in our decision. For example, many community detection algorithms, including the popular modularity maximization approach, infer module assignments from an underlying model of the network formation process. However, we are not always as interested in how a system's network structure was formed, as we are in how a network's extant structure influences the system's behavior. To see how structure influences current behavior, we will recognize that links in a network induce movement across the network and result in system-wide interdependence. In doing so, we explicitly acknowledge that most networks carry flow. To highlight and simplify the network structure with respect to this flow, we use the map equation. We present an intuitive derivation of this flow-based and information-theoretic method and provide an interactive on-line application that anyone can use to explore the mechanics of the map equation. We also describe an algorithm and provide source code to efficiently decompose large weighted and directed networks based on the map equation.Comment: 9 pages and 3 figures, corrected typos. For associated Flash application, see http://www.tp.umu.se/~rosvall/livemod/mapequation

    General Bounds for Incremental Maximization

    Full text link
    We propose a theoretical framework to capture incremental solutions to cardinality constrained maximization problems. The defining characteristic of our framework is that the cardinality/support of the solution is bounded by a value kNk\in\mathbb{N} that grows over time, and we allow the solution to be extended one element at a time. We investigate the best-possible competitive ratio of such an incremental solution, i.e., the worst ratio over all kk between the incremental solution after kk steps and an optimum solution of cardinality kk. We define a large class of problems that contains many important cardinality constrained maximization problems like maximum matching, knapsack, and packing/covering problems. We provide a general 2.6182.618-competitive incremental algorithm for this class of problems, and show that no algorithm can have competitive ratio below 2.182.18 in general. In the second part of the paper, we focus on the inherently incremental greedy algorithm that increases the objective value as much as possible in each step. This algorithm is known to be 1.581.58-competitive for submodular objective functions, but it has unbounded competitive ratio for the class of incremental problems mentioned above. We define a relaxed submodularity condition for the objective function, capturing problems like maximum (weighted) (bb-)matching and a variant of the maximum flow problem. We show that the greedy algorithm has competitive ratio (exactly) 2.3132.313 for the class of problems that satisfy this relaxed submodularity condition. Note that our upper bounds on the competitive ratios translate to approximation ratios for the underlying cardinality constrained problems.Comment: fixed typo
    corecore