6,152 research outputs found

    A multi-modal person perception framework for socially interactive mobile service robots

    Get PDF
    In order to meet the increasing demands of mobile service robot applications, a dedicated perception module is an essential requirement for the interaction with users in real-world scenarios. In particular, multi sensor fusion and human re-identification are recognized as active research fronts. Through this paper we contribute to the topic and present a modular detection and tracking system that models position and additional properties of persons in the surroundings of a mobile robot. The proposed system introduces a probability-based data association method that besides the position can incorporate face and color-based appearance features in order to realize a re-identification of persons when tracking gets interrupted. The system combines the results of various state-of-the-art image-based detection systems for person recognition, person identification and attribute estimation. This allows a stable estimate of a mobile robot’s user, even in complex, cluttered environments with long-lasting occlusions. In our benchmark, we introduce a new measure for tracking consistency and show the improvements when face and appearance-based re-identification are combined. The tracking system was applied in a real world application with a mobile rehabilitation assistant robot in a public hospital. The estimated states of persons are used for the user-centered navigation behaviors, e.g., guiding or approaching a person, but also for realizing a socially acceptable navigation in public environments

    Video analysis based vehicle detection and tracking using an MCMC sampling framework

    Full text link
    This article presents a probabilistic method for vehicle detection and tracking through the analysis of monocular images obtained from a vehicle-mounted camera. The method is designed to address the main shortcomings of traditional particle filtering approaches, namely Bayesian methods based on importance sampling, for use in traffic environments. These methods do not scale well when the dimensionality of the feature space grows, which creates significant limitations when tracking multiple objects. Alternatively, the proposed method is based on a Markov chain Monte Carlo (MCMC) approach, which allows efficient sampling of the feature space. The method involves important contributions in both the motion and the observation models of the tracker. Indeed, as opposed to particle filter-based tracking methods in the literature, which typically resort to observation models based on appearance or template matching, in this study a likelihood model that combines appearance analysis with information from motion parallax is introduced. Regarding the motion model, a new interaction treatment is defined based on Markov random fields (MRF) that allows for the handling of possible inter-dependencies in vehicle trajectories. As for vehicle detection, the method relies on a supervised classification stage using support vector machines (SVM). The contribution in this field is twofold. First, a new descriptor based on the analysis of gradient orientations in concentric rectangles is dened. This descriptor involves a much smaller feature space compared to traditional descriptors, which are too costly for real-time applications. Second, a new vehicle image database is generated to train the SVM and made public. The proposed vehicle detection and tracking method is proven to outperform existing methods and to successfully handle challenging situations in the test sequences

    Object detection and tracking in video image

    Get PDF
    In recent days, capturing images with high quality and good size is so easy because of rapid improvement in quality of capturing device with less costly but superior technology. Videos are a collection of sequential images with a constant time interval. So video can provide more information about our object when scenarios are changing with respect to time. Therefore, manually handling videos are quite impossible. So we need an automated devise to process these videos. In this thesis one such attempt has been made to track objects in videos. Many algorithms and technology have been developed to automate monitoring the object in a video file. Object detection and tracking is a one of the challenging task in computer vision. Mainly there are three basic steps in video analysis: Detection of objects of interest from moving objects, Tracking of that interested objects in consecutive frames, and Analysis of object tracks to understand their behavior. Simple object detection compares a static background frame at the pixel level with the current frame of video. The existing method in this domain first tries to detect the interest object in video frames. One of the main difficulties in object tracking among many others is to choose suitable features and models for recognizing and tracking the interested object from a video. Some common choice to choose suitable feature to categories, visual objects are intensity, shape, color and feature points. In this thesis, we studied about mean shift tracking based on the color pdf, optical flow tracking based on the intensity and motion; SIFT tracking based on scale invariant local feature points. Preliminary results from experiments have shown that the adopted method is able to track targets with translation, rotation, partial occlusion and deformation
    corecore