15,159 research outputs found

    Improved movie recommendations based on a hybrid feature combination method

    Get PDF
    Recommender systems help users find relevant items efficiently based on their interests and historical interactions with other users. They are beneficial to businesses by promoting the sale of products and to user by reducing the search burden. Recommender systems can be developed by employing different approaches, including collaborative filtering (CF), demographic filtering (DF), content-based filtering (CBF) and knowledge-based filtering (KBF). However, large amounts of data can produce recommendations that are limited in accuracy because of diversity and sparsity issues. In this paper, we propose a novel hybrid method that combines user–user CF with the attributes of DF to indicate the nearest users, and compare four classifiers against each other. This method has been developed through an investigation of ways to reduce the errors in rating predictions based on users’ past interactions, which leads to improved prediction accuracy in all four classification algorithms. We applied a feature combination method that improves the prediction accuracy and to test our approach, we ran an offline evaluation using the 1M MovieLens dataset, well-known evaluation metrics and comparisons between methods with the results validating our proposed method

    An improved switching hybrid recommender system using naive Bayes classifier and collaborative filtering

    No full text
    Recommender Systems apply machine learning and data mining techniques for filtering unseen information and can predict whether a user would like a given resource. To date a number of recommendation algorithms have been proposed, where collaborative filtering and content-based filtering are the two most famous and adopted recommendation techniques. Collaborative filtering recommender systems recommend items by identifying other users with similar taste and use their opinions for recommendation; whereas content-based recommender systems recommend items based on the content information of the items. These systems suffer from scalability, data sparsity, over specialization, and cold-start problems resulting in poor quality recommendations and reduced coverage. Hybrid recommender systems combine individual systems to avoid certain aforementioned limitations of these systems. In this paper, we proposed a unique switching hybrid recommendation approach by combining a Naive Bayes classification approach with the collaborative filtering. Experimental results on two different data sets, show that the proposed algorithm is scalable and provide better performance – in terms of accuracy and coverage – than other algorithms while at the same time eliminates some recorded problems with the recommender systems

    Including Item Characteristics in the Probabilistic Latent Semantic Analysis Model for Collaborative Filtering

    Get PDF
    We propose a new hybrid recommender system that combines some advantages of collaborative and content-based recommender systems. While it uses ratings data of all users, as do collaborative recommender systems, it is also able to recommend new items and provide an explanation of its recommendations, as do content-based systems. Our approach is based on the idea that there are communities of users that find the same characteristics important to like or dislike a product. This model is an extension of the probabilistic latent semantic model for collaborative filtering with ideas based on clusterwise linear regression. On a movie data set, we show that the model is competitive to other recommenders and can be used to explain the recommendations to the users.algorithms;probabilistic latent semantic analysis;hybrid recommender systems;recommender systems
    corecore