107,812 research outputs found

    Discrepancy-based error estimates for Quasi-Monte Carlo. I: General formalism

    Get PDF
    We show how information on the uniformity properties of a point set employed in numerical multidimensional integration can be used to improve the error estimate over the usual Monte Carlo one. We introduce a new measure of (non-)uniformity for point sets, and derive explicit expressions for the various entities that enter in such an improved error estimate. The use of Feynman diagrams provides a transparent and straightforward way to compute this improved error estimate.Comment: 23 pages, uses axodraw.sty, available at ftp://nikhefh.nikhef.nl/pub/form/axodraw Fixed some typos, tidied up section 3.

    Improved Phase Space Treatment of Massive Multi-Particle Final States

    Full text link
    In this paper the revised Kajantie-Byckling approach and improved phase space sampling techniques for the massive multi-particle final states are presented. The application of the developed procedures to the processes representative for LHC physics indicates the possibility of a substantial simplification of multi-particle phase space sampling while retaining a respectable weight variance reduction and unweighing efficiencies in the event generation process.Comment: Minor stilistic changes, submitted to EPJ

    Error in Monte Carlo, quasi-error in Quasi-Monte Carlo

    Get PDF
    While the Quasi-Monte Carlo method of numerical integration achieves smaller integration error than standard Monte Carlo, its use in particle physics phenomenology has been hindered by the abscence of a reliable way to estimate that error. The standard Monte Carlo error estimator relies on the assumption that the points are generated independently of each other and, therefore, fails to account for the error improvement advertised by the Quasi-Monte Carlo method. We advocate the construction of an estimator of stochastic nature, based on the ensemble of pointsets with a particular discrepancy value. We investigate the consequences of this choice and give some first empirical results on the suggested estimators.Comment: 41 pages, 19 figure

    The Rational Hybrid Monte Carlo Algorithm

    Get PDF
    The past few years have seen considerable progress in algorithmic development for the generation of gauge fields including the effects of dynamical fermions. The Rational Hybrid Monte Carlo (RHMC) algorithm, where Hybrid Monte Carlo is performed using a rational approximation in place the usual inverse quark matrix kernel is one of these developments. This algorithm has been found to be extremely beneficial in many areas of lattice QCD (chiral fermions, finite temperature, Wilson fermions etc.). We review the algorithm and some of these benefits, and we compare against other recent algorithm developements. We conclude with an update of the Berlin wall plot comparing costs of all popular fermion formulations.Comment: 15 pages. Proceedings from Lattice 200

    Smoothing the payoff for efficient computation of Basket option prices

    Get PDF
    We consider the problem of pricing basket options in a multivariate Black Scholes or Variance Gamma model. From a numerical point of view, pricing such options corresponds to moderate and high dimensional numerical integration problems with non-smooth integrands. Due to this lack of regularity, higher order numerical integration techniques may not be directly available, requiring the use of methods like Monte Carlo specifically designed to work for non-regular problems. We propose to use the inherent smoothing property of the density of the underlying in the above models to mollify the payoff function by means of an exact conditional expectation. The resulting conditional expectation is unbiased and yields a smooth integrand, which is amenable to the efficient use of adaptive sparse grid cubature. Numerical examples indicate that the high-order method may perform orders of magnitude faster compared to Monte Carlo or Quasi Monte Carlo in dimensions up to 35

    A histogram-free multicanonical Monte Carlo algorithm for the basis expansion of density of states

    Full text link
    We report a new multicanonical Monte Carlo (MC) algorithm to obtain the density of states (DOS) for physical systems with continuous state variables in statistical mechanics. Our algorithm is able to obtain an analytical form for the DOS expressed in a chosen basis set, instead of a numerical array of finite resolution as in previous variants of this class of MC methods such as the multicanonical (MUCA) sampling and Wang-Landau (WL) sampling. This is enabled by storing the visited states directly in a data set and avoiding the explicit collection of a histogram. This practice also has the advantage of avoiding undesirable artificial errors caused by the discretization and binning of continuous state variables. Our results show that this scheme is capable of obtaining converged results with a much reduced number of Monte Carlo steps, leading to a significant speedup over existing algorithms.Comment: 8 pages, 6 figures. Paper accepted in the Platform for Advanced Scientific Computing Conference (PASC '17), June 26 to 28, 2017, Lugano, Switzerlan

    A Rigourous Treatment of the Lattice Renormalization Problem of F_B

    Full text link
    The BB-meson decay constant can be measured on the lattice using a 1/mb1/m_b expansion. To relate the physical quantity to Monte Carlo data one has to know the renormalization coefficient, ZZ, between the lattice operators and their continuum counterparts. We come back to this computation to resolve discrepancies found in previous calculations. We define and discuss in detail the renormalization procedure that allows the (perturbative) computation of ZZ. Comparing the one-loop calculations in the effective Lagrangian approach with the direct two-loop calculation of the two-point BB-meson correlator in the limit of large bb-quark mass, we prove that the two schemes give consistent results to order αs\alpha_s. We show that there is, however, a renormalization prescription ambiguity that can have sizeable numerical consequences. This ambiguity can be resolved in the framework of an O(a)O(a) improved calculation, and we describe the correct prescription in that case. Finally we give the numerical values of ZZ that correspond to the different types of lattice approximations discussed in the paper.Comment: 27 pages, 2 figures (Plain TeX, figures in an appended postscript file
    • 

    corecore