63 research outputs found

    Solving Combinatorial Optimization Problems Using Genetic Algorithms and Ant Colony Optimization

    Get PDF
    This dissertation presents metaheuristic approaches in the areas of genetic algorithms and ant colony optimization to combinatorial optimization problems. Ant colony optimization for the split delivery vehicle routing problem An Ant Colony Optimization (ACO) based approach is presented to solve the Split Delivery Vehicle Routing Problem (SDVRP). SDVRP is a relaxation of the Capacitated Vehicle Routing Problem (CVRP) wherein a customer can be visited by more than one vehicle. The proposed ACO based algorithm is tested on benchmark problems previously published in the literature. The results indicate that the ACO based approach is competitive in both solution quality and solution time. In some instances, the ACO method achieves the best known results to date for the benchmark problems. Hybrid genetic algorithm for the split delivery vehicle routing problem (SDVRP) The Vehicle Routing Problem (VRP) is a combinatory optimization problem in the field of transportation and logistics. There are various variants of VRP which have been developed of the years; one of which is the Split Delivery Vehicle Routing Problem (SDVRP). The SDVRP allows customers to be assigned to multiple routes. A hybrid genetic algorithm comprising a combination of ant colony optimization, genetic algorithm, and heuristics is proposed and tested on benchmark SDVRP test problems. Genetic algorithm approach to solve the hospital physician scheduling problem Emergency departments have repeating 24-hour cycles of non-stationary Poisson arrivals and high levels of service time variation. The problem is to find a shift schedule that considers queuing effects and minimizes average patient waiting time and maximizes physicians’ shift preference subject to constraints on shift start times, shift durations and total physician hours available per day. An approach that utilizes a genetic algorithm and discrete event simulation to solve the physician scheduling problem in a hospital is proposed. The approach is tested on real world datasets for physician schedules

    OPTIMIZATION OF RAILWAY TRANSPORTATION HAZMATS AND REGULAR COMMODITIES

    Get PDF
    Transportation of dangerous goods has been receiving more attention in the realm of academic and scientific research during the last few decades as countries have been increasingly becoming industrialized throughout the world, thereby making Hazmats an integral part of our life style. However, the number of scholarly articles in this field is not as many as those of other areas in SCM. Considering the low-probability-and-high-consequence (LPHC) essence of transportation of Hazmats, on the one hand, and immense volume of shipments accounting for more than hundred tons in North America and Europe, on the other, we can safely state that the number of scholarly articles and dissertations have not been proportional to the significance of the subject of interest. On this ground, we conducted our research to contribute towards further developing the domain of Hazmats transportation, and sustainable supply chain management (SSCM), in general terms. Transportation of Hazmats, from logistical standpoint, may include all modes of transport via air, marine, road and rail, as well as intermodal transportation systems. Although road shipment is predominant in most of the literature, railway transportation of Hazmats has proven to be a potentially significant means of transporting dangerous goods with respect to both economies of scale and risk of transportation; these factors, have not just given rise to more thoroughly investigation of intermodal transportation of Hazmats using road and rail networks, but has encouraged the competition between rail and road companies which may indeed have some inherent advantages compared to the other medium due to their infrastructural and technological backgrounds. Truck shipment has ostensibly proven to be providing more flexibility; trains, per contra, provide more reliability in terms of transport risk for conveying Hazmats in bulks. In this thesis, in consonance with the aforementioned motivation, we provide an introduction into the hazardous commodities shipment through rail network in the first chapter of the thesis. Providing relevant statistics on the volume of Hazmat goods, number of accidents, rate of incidents, and rate of fatalities and injuries due to the incidents involving Hazmats, will shed light onto the significance of the topic under study. As well, we review the most pertinent articles while putting more emphasis on the state-of-the-art papers, in chapter two. Following the discussion in chapter 3 and looking at the problem from carrier company’s perspective, a mixed integer quadratically constraint problem (MIQCP) is developed which seeks for the minimization of transportation cost under a set of constraints including those associating with Hazmats. Due to the complexity of the problem, the risk function has been piecewise linearized using a set of auxiliary variables, thereby resulting in an MIP problem. Further, considering the interests of both carrier companies and regulatory agencies, which are minimization of cost and risk, respectively, a multiobjective MINLP model is developed, which has been reduced to an MILP through piecewise linearization of the risk term in the objective function. For both single-objective and multiobjective formulations, model variants with bifurcated and nonbifurcated flows have been presented. Then, in chapter 4, we carry out experiments considering two main cases where the first case presents smaller instances of the problem and the second case focuses on a larger instance of the problem. Eventually, in chapter five, we conclude the dissertation with a summary of the overall discussion as well as presenting some comments on avenues of future work

    Enhancement on the modified artificial bee colony algorithm to optimize the vehicle routing problem with time windows

    Get PDF
    The vehicle routing problem with time windows (VRPTW) is a non-deterministictime hard (NP-hard) with combinatorial optimization problem (COP). The Artificial Bee Colony (ABC) is a popular swarm intelligence algorithm for COP. In this study, existing Modified ABC (MABC) algorithm is revised to solve the VRPTW. While MABC has been reported to be successful, it does have some drawbacks, including a lack of neighbourhood structure selection during the intensification process, a lack of knowledge in population initialization, and occasional stops proceeding the global optimum. This study proposes an enhanced Modified ABC (E-MABC) algorithm which includes (i) N-MABC that overcomes the shortage of neighborhood selection by exchanging the neighborhood structure between two different routes in the solution; (ii) MABC-ACS that solves the issues of knowledge absence in MABC population initialization by incorporating ant colony system heuristics, and (iii) PMABC which addresses the occasional stops proceeding to the global optimum by introducing perturbation that accepts an abandoned solution and jumps out of a local optimum. The proposed algorithm was evaluated using benchmark datasets comprising 56 VRPTW instances and 56 Pickup and Delivery Problems with Time Windows (PDPTW). The performance has been measured using the travelled distance (TD) and the number of deployed vehicles (NV). The results showed that the proposed E-MABC has lower TD and NV than the benchmarked MABC and other algorithms. The E-MABC algorithm is better than the MABC by 96.62%, MOLNS by 87.5%, GAPSO by 53.57%, MODLEM by 76.78%, and RRGA by 42.85% in terms of TD. Additionally, the E-MABC algorithm is better than the MABC by 42.85%, MOLNS by 17.85%, GA-PSO and RRGA by 28.57%, and MODLEN by 46.42% in terms of NV. This indicates that the proposed E-MABC algorithm is promising and effective for the VRPTW and PDPTW, and thus can compete in other routing problems and COPs

    Applied (Meta)-Heuristic in Intelligent Systems

    Get PDF
    Engineering and business problems are becoming increasingly difficult to solve due to the new economics triggered by big data, artificial intelligence, and the internet of things. Exact algorithms and heuristics are insufficient for solving such large and unstructured problems; instead, metaheuristic algorithms have emerged as the prevailing methods. A generic metaheuristic framework guides the course of search trajectories beyond local optimality, thus overcoming the limitations of traditional computation methods. The application of modern metaheuristics ranges from unmanned aerial and ground surface vehicles, unmanned factories, resource-constrained production, and humanoids to green logistics, renewable energy, circular economy, agricultural technology, environmental protection, finance technology, and the entertainment industry. This Special Issue presents high-quality papers proposing modern metaheuristics in intelligent systems

    Preventing premature convergence and proving the optimality in evolutionary algorithms

    Get PDF
    http://ea2013.inria.fr//proceedings.pdfInternational audienceEvolutionary Algorithms (EA) usually carry out an efficient exploration of the search-space, but get often trapped in local minima and do not prove the optimality of the solution. Interval-based techniques, on the other hand, yield a numerical proof of optimality of the solution. However, they may fail to converge within a reasonable time due to their inability to quickly compute a good approximation of the global minimum and their exponential complexity. The contribution of this paper is a hybrid algorithm called Charibde in which a particular EA, Differential Evolution, cooperates with a Branch and Bound algorithm endowed with interval propagation techniques. It prevents premature convergence toward local optima and outperforms both deterministic and stochastic existing approaches. We demonstrate its efficiency on a benchmark of highly multimodal problems, for which we provide previously unknown global minima and certification of optimality

    Adaptive operator search for the capacitated arc routine problem

    Get PDF
    Evolutionary Computation approaches for Combinatorial Optimization have been successfully proposed for a plethora of different NP-Hard Problems. This research area has achieved acknowledgeable results and obtained remarkable progresses, and it has ultimately established itself as one of the most studied in AI. Yet, predicting the approximation ability of Evolutionary Algorithms (EAs) on novel problem instances remains a difficult easy task. As a consequence, their application in a real-world optimization context is reduced, as EAs are often considered not reliable and mature enough to be adopted in an industrial scenario. This thesis proposes new approaches to endow such meta-heuristics with a mechanism that would allow them to extract information during the search and to adaptively use such information in order to modify their behaviour and ultimately improve their performances. We consider the case study of the Capacitated Arc Routing Problem (CARP), to demonstrate the effectiveness of adaptive search techniques in a complex problem deeply connected with real-world scenarios. In particular, the main contributions of this thesis are: 1. An investigation of the adoption of a Parameter Tuning mechanism to adaptively choose the crossover operator that is used during the search; 2. The study of a novel Adaptive Operator Selection technique based on the use of Fitness Landscape Analysis techniques and on Online Learning; 3. A novel approach based on Knowledge Incorporation focusing on the reuse of information learned from the execution of a meta-heuristic on past instances, that is later used to improve the performances on the newly encountered

    Mathematical Methods and Operation Research in Logistics, Project Planning, and Scheduling

    Get PDF
    In the last decade, the Industrial Revolution 4.0 brought flexible supply chains and flexible design projects to the forefront. Nevertheless, the recent pandemic, the accompanying economic problems, and the resulting supply problems have further increased the role of logistics and supply chains. Therefore, planning and scheduling procedures that can respond flexibly to changed circumstances have become more valuable both in logistics and projects. There are already several competing criteria of project and logistic process planning and scheduling that need to be reconciled. At the same time, the COVID-19 pandemic has shown that even more emphasis needs to be placed on taking potential risks into account. Flexibility and resilience are emphasized in all decision-making processes, including the scheduling of logistic processes, activities, and projects
    • …
    corecore