1,892 research outputs found

    A Meet-in-the-Middle Attack on ARIA

    Get PDF
    In this paper, we study the meet-in-the-middle attack against block cipher ARIA. We find some new 3-round and 4-round distinguish- ing properties of ARIA. Based on the 3-round distinguishing property, we can apply the meet-in-the-middle attack with up to 6 rounds for all versions of ARIA. Based on the 4-round distinguishing property, we can mount a successful attack on 8-round ARIA-256. Furthermore, the 4-round distinguishing property could be improved which leads to a 7-round attack on ARIA-192. The data and time complexities of 7-round attack are 2^120 and 2^185:3, respectively. The data and time complexities of 8-round attack are 2^56 and 2^251:6, respectively. Compared with the existing cryptanalytic results on ARIA, our 5-round attack has the lowest data and time complexities and the 6-round attack has the lowest data complexity. Moreover, it is shown that 8-round ARIA-256 is not immune to the meet-in-the-middle attack

    Biclique Attack of the Full ARIA-256

    Get PDF
    In this paper, combining the biclique cryptanalysis with the MITM attack, we present the first key recovery method for the full ARIA-256 faster than brute-force. The attack requires 2802^{80} chosen plaintexts, and the time complexity is about 2255.22^{255.2} full-round ARIA encryptions in the processing phase

    Depth-Optimized Quantum Implementation of ARIA

    Get PDF
    The advancement of large-scale quantum computers poses a threat to the security of current encryption systems. In particular, symmetric-key cryptography significantly is impacted by general attacks using the Grover\u27s search algorithm. In recent years, studies have been presented to estimate the complexity of Grover\u27s key search for symmetric-key ciphers and assess post-quantum security. In this paper, we propose a depth-optimized quantum circuit implementation for ARIA, which is a symmetric key cipher included as a validation target the Korean Cryptographic Module Validation Program (KCMVP). Our quantum circuit implementation for ARIA improves the depth by more than 88.2% and Toffoli depth by more than 98.7% compared to the implementation presented in Chauhan et al.\u27s SPACE\u2720 paper. Finally, we present the cost of Grover\u27s key search for our circuit and evaluate the post-quantum security strength of ARIA according to relevant evaluation criteria provided NIST

    Cryptanalysis and Design of Symmetric Primitives

    Get PDF
    Der Schwerpunkt dieser Dissertation liegt in der Analyse und dem Design von Block- chiffren und Hashfunktionen. Die Arbeit beginnt mit einer EinfĂŒhrung in Techniken zur Kryptoanalyse von Blockchiffren. Wir beschreiben diese Methoden und zeigen wie man daraus neue Techniken entwickeln kann, welche zu staerkeren Angriffen fuehren. Im zweiten Teil der Arbeit stellen wir eine Reihe von Angriffen auf eine Vielzahl von Blockchiffren dar. Wir haben dabei Angriffe auf reduzierte Versionen von ARIA und dem AES entwickelt. Darueber hinaus praesentieren wir im dritten Teil Angriffe auf interne Blockchiffren von Hashfunktionen. Wir entwickeln Angriffe, welche die inter- nen Blockchiffren von Tiger und HAS-160 auf volle Rundenanzahl brechen. Die hier vorgestellten Angriffe sind die ersten dieser Art. Ein Angriff auf eine reduzierte Ver- sion von SHACAL-2 welcher fast keinen Speicherbedarf hat, wird ebenfalls vorgestellt. Der vierte Teil der Arbeit befasst sich mit den Design und der Analyse von kryp- tographischen Hashfunktionen. Wir habe einen Slide Angriff, eine Technik welche aus der Analyse von Blockchiffren bekannt ist, im Kontext von Hashfunktionen zur Anwendung gebracht. Dabei praesentieren wir verschiedene Angriffe auf GRINDAHL und RADIOGATUN. Aufbauend auf den Angriffen des zweiten und dritten Teils dieser Arbeit stellen wir eine neue Hashfunktion vor, welche wir TWISTER nennen. TWISTER wurde fuer den SHA-3 Wettbewerb entwickelt und ist bereits zur ersten Runde angenommen.This thesis focuses on the cryptanalysis and the design of block ciphers and hash func- tions. The thesis starts with an overview of methods for cryptanalysis of block ciphers which are based on differential cryptanalysis. We explain these concepts and also sev- eral combinations of these attacks. We propose new attacks on reduced versions of ARIA and AES. Furthermore, we analyze the strength of the internal block ciphers of hash functions. We propose the first attacks that break the internal block ciphers of Tiger, HAS-160, and a reduced round version of SHACAL-2. The last part of the thesis is concerned with the analysis and the design of cryptographic hash functions. We adopt a block cipher attack called slide attack into the scenario of hash function cryptanalysis. We then use this new method to attack different variants of GRINDAHL and RADIOGATUN. Finally, we propose a new hash function called TWISTER which was designed and pro- posed for the SHA-3 competition. TWISTER was accepted for round one of this com- petition. Our approach follows a new strategy to design a cryptographic hash function. We also describe several attacks on TWISTER and discuss the security issues concern- ing these attack on TWISTER

    Programming the Demirci-Selçuk Meet-in-the-Middle Attack with Constraints

    Get PDF
    International audienceCryptanalysis with SAT/SMT, MILP and CP has increased in popularity among symmetric-key cryptanalysts and designers due to its high degree of automation. So far, this approach covers differential, linear, impossible differential, zero-correlation, and integral cryptanaly-sis. However, the Demirci-Selçuk meet-in-the-middle (DS-MITM) attack is one of the most sophisticated techniques that has not been automated with this approach. By an in-depth study of Derbez and Fouque's work on DS-MITM analysis with dedicated search algorithms, we identify the crux of the problem and present a method for automatic DS-MITM attack based on general constraint programming, which allows the crypt-analysts to state the problem at a high level without having to say how it should be solved. Our method is not only able to enumerate distin-guishers but can also partly automate the key-recovery process. This approach makes the DS-MITM cryptanalysis more straightforward and easier to follow, since the resolution of the problem is delegated to off-the-shelf constraint solvers and therefore decoupled from its formulation. We apply the method to SKINNY, TWINE, and LBlock, and we get the currently known best DS-MITM attacks on these ciphers. Moreover, to demonstrate the usefulness of our tool for the block cipher designers, we exhaustively evaluate the security of 8! = 40320 versions of LBlock instantiated with different words permutations in the F functions. It turns out that the permutation used in the original LBlock is one of the 64 permutations showing the strongest resistance against the DS-MITM attack. The whole process is accomplished on a PC in less than 2 hours. The same process is applied to TWINE, and similar results are obtained

    New Insights on AES-like SPN Ciphers

    Get PDF
    It has been proved in Eurocrypt 2016 that if the details of the S-boxes are not exploited, an impossible differential and a zero-correlation hull can extend over at most 4 rounds of the AES. This paper concentrates on distinguishing attacks on AES-like SPN ciphers by investigating the details of both the S-boxes and the MDS matrices and illustrates some new insights on the security of these schemes. Firstly, we construct several types of 55-round zero-correlation linear hulls for AES-like ciphers that adopt identical S-boxes to construct the round function and that have two identical elements in a column of the inverse of their MDS matrices. We then use these linear hulls to construct 5-round integrals provided that the difference of two sub-key bytes is known. Furthermore, we prove that we can always distinguish 5 rounds of such ciphers from random permutations even when the difference of the sub-keys is unknown. Secondly, the constraints for the S-boxes and special property of the MDS matrices can be removed if the cipher is used as a building block of the Miyaguchi-Preneel hash function. As an example, we construct two types of 5-round distinguishers for the hash function Whirlpool. Finally, we show that, in the chosen-ciphertext mode, there exist some nontrivial distinguishers for 5-round AES. To the best of our knowledge, this is the longest distinguishing attack for the round-reduced AES in the secret-key setting. Since the 5-round distinguisher for the AES can only be constructed in the chosen-ciphertext mode, the security margin for the round-reduced AES under the chosen-plaintext attack may be different from that under the chosen-ciphertext attack

    New Impossible Differential Search Tool from Design and Cryptanalysis Aspects

    Get PDF
    In this paper, a new tool searching for impossible differentials against symmetric-key primitives is presented. Compared to the previous tools, our tool can detect any contradiction between input and output differences, and it can take into account the property inside the S-box when its size is small e.g. 4 bits. In addition, several techniques are proposed to evaluate 8-bit S-box. With this tool, the number of rounds of impossible differentials are improved from the previous best results by 1 round for Midori128, Lilliput, and Minalpher. The tool also finds new impossible differentials of ARIA and MIBS. We manually verify the impossibility of the searched results, which reveals new structural properties of those designs. Our tool can be implemented only by slightly modifying the previous differential search tool using Mixed Integer Linear Programming (MILP), while the previous tools need to be implemented independently of the differential search tools. This motivates us to discuss the usage of our tool particular for the design process. With this tool, the maximum number of rounds of impossible differentials can be proven under reasonable assumptions and the tool is applied to various concrete designs

    Bicliques with Minimal Data and Time Complexity for AES (Extended Version)

    Get PDF
    Biclique cryptanalysis is a recent technique that has been successfully applied to AES resulting in key recovery faster than brute force. However, a major hurdle in carrying out biclique cryptanalysis on AES is that it requires very high data complexity. This naturally warrants questions over the practical feasibility of implementing biclique attack in the real world. In Crypto\u2713, Canteaut et al. proposed biclique attack where the data complexity of the attack was reduced to a single plaintext-ciphertext pair. However, no application of the same on AES was suggested. In this paper, we re-evaluate the security-bound of full round AES against biclique attack. Under some reasonable restrictions, we exhaustively analyze the most promising class of biclique cryptanalysis as applied to AES through a computer-assisted search and find optimal attacks towards lowest computational and data complexities: - Among attacks with the minimal data complexity of the unicity distance, the ones with computational complexity 2^126.67 (for AES-128), 2^190.9 (for AES-192) and 2^255 (for AES-256) are the fastest. Each attack just requires 2 (for AES-128 and AES-192) or 3 (for AES-256) known plaintexts for success probability 1. We obtain these results using the improved biclique attack proposed in Crypto\u2713. - Among attacks with data complexity less than the full codebook, for AES-128, the ones of computational complexity 2^126.16 are fastest. Within these, the one with data complexity 2^64 requires the smallest amount of data. Thus, the original attack (with data complexity 2^88) did not have the optimal data complexity for AES-128. Similar findings are observed for AES-192 as well (data complexity 2^48 as against 2^80 in the original attack). For AES-256, we find an attack that has a lower computational complexity of 2^254.31 as compared to the original attack complexity of 2^254.42. - Among all attacks covered, the ones of computational complexity 2^125.56 (for AES-128), 2^189.51 (for AES-192) and 2^253.87 (for AES-256) are fastest, though requiring the full codebook. This can be considered as an indication of the limitations of the independent-biclique attack approach as applied to AES

    New Impossible Differential Attacks of Reduced-Round Camellia-192 and Camellia-256

    Get PDF
    Camellia is a block cipher selected as a standard by ISO/IEC, which has been analyzed by a number of cryptanalysts. In this paper, we propose several 6-round impossible differential paths of Camellia with the FL/FL−1FL/FL^{-1} layer in the middle of them. With the impossible differential and a well-organized precomputational table, impossible differential attacks on 10-round Camellia-192 and 11-round Camellia-256 are given, and the time complexity are 21752^{175} and 2206.82^{206.8} respectively. An impossible differential attack on 15-round Camellia-256 without FL/FL−1FL/FL^{-1} layers and whitening is also be given, which needs about 2236.12^{236.1} encryptions. To the best of our knowledge, these are the best cryptanalytic results of Camellia-192/-256 with FL/FL−1FL/FL^{-1} layers and Camellia-256 without FL/FL−1FL/FL^{-1} layers to date

    Tuple Cryptanalysis: Slicing and Fusing Multisets

    Get PDF
    International audienceIn this paper, we revisit the notions of Square, saturation, integrals, multisets, bit patterns and tuples, and propose a new Slice & Fuse paradigm to better exploit multiset type properties of block ciphers, as well as relations between multisets and constituent bitslice tuples. With this refined analysis, we are able to improve the best bounds proposed in such contexts against the following block ciphers: Threefish, Prince, Present and Rectangle
    • 

    corecore