1,912 research outputs found

    Massive MIMO is a Reality -- What is Next? Five Promising Research Directions for Antenna Arrays

    Full text link
    Massive MIMO (multiple-input multiple-output) is no longer a "wild" or "promising" concept for future cellular networks - in 2018 it became a reality. Base stations (BSs) with 64 fully digital transceiver chains were commercially deployed in several countries, the key ingredients of Massive MIMO have made it into the 5G standard, the signal processing methods required to achieve unprecedented spectral efficiency have been developed, and the limitation due to pilot contamination has been resolved. Even the development of fully digital Massive MIMO arrays for mmWave frequencies - once viewed prohibitively complicated and costly - is well underway. In a few years, Massive MIMO with fully digital transceivers will be a mainstream feature at both sub-6 GHz and mmWave frequencies. In this paper, we explain how the first chapter of the Massive MIMO research saga has come to an end, while the story has just begun. The coming wide-scale deployment of BSs with massive antenna arrays opens the door to a brand new world where spatial processing capabilities are omnipresent. In addition to mobile broadband services, the antennas can be used for other communication applications, such as low-power machine-type or ultra-reliable communications, as well as non-communication applications such as radar, sensing and positioning. We outline five new Massive MIMO related research directions: Extremely large aperture arrays, Holographic Massive MIMO, Six-dimensional positioning, Large-scale MIMO radar, and Intelligent Massive MIMO.Comment: 20 pages, 9 figures, submitted to Digital Signal Processin

    Codificação de bloco espaço-tempo na habilitação de sistemas MIMO-OFDM

    Get PDF
    The available bandwidth in the radio frequency spectrum is decreasing due to the growing number of applications and users. Therefore, in order to ensure a sustainable evolution in this area it is crucial to develop strategies to optimize the spectrum usage. Joining RADAR and communication functionalities in a single terminal represents exactly this same strategy. As such, the two functionalities, which usually compete for the same radio resources, can coexist through a cooperative relation in which they can thrive and cease to introduce interferences in between them. In this dissertation, the integration of both systems is achieved through the use of OFDM as the common waveform. Through the space time/frequency block codes, namely the Tarokh coding it is possible to introduce spatial diversity and orthogonality to the system, therefore increasing the system’s robustness and allowing to use the virtual antenna concept, which enables improved RADAR resolution and detection. In order to evaluate the system’s performance, a simulation platform was developed. In these simulations we start by firstly considering RADAR detection for single and multiple antenna systems and then integrate the radar and communication functionalities. We have verified the good performance levels of the proposed system, which thanks to its low complexity can be an interesting RadCom approach for future wireless systems.A largura de banda disponível no espectro de radio frequência enfrenta uma diminuição face ao crescente número de aplicações e utilizadores. Assim, por forma a assegurar uma evolução sustentável neste campo é fulcral desenvolver estratégias que otimizem o uso do espectro. A junção das funcionalidades RADAR e comunicação num só terminal faz parte dessa estratégia. Desta forma, duas funcionalidades usualmente concorrentes pelos mesmos recursos radio, podem coexistir em cooperação, sem interferência entre ambos. Nesta dissertação a integração dos dois sistemas é conseguida através do uso do OFDM como forma de onda comum. Através de códigos desenhados no espaço-tempo/frequência, nomeadamente a codificação de Tarokh, foi possível introduzir diversidade espacial e ortogonalidade no sistema, aumentando assim a sua robustez e permitindo o uso do conceito de antenas virtuais, que por sua vez possibilitam uma melhoria na resolução e deteção do RADAR. De forma a avaliar o desempenho do sistema desenvolveu-se uma plataforma de simulação. Nesta plataforma começou-se por considerar a deteção RADAR para sistemas com uma e múltiplas antenas, onde posteriormente se integraram as funcionalidades de comunicação. Os resultados obtidos mostraram um excelente desempenho do sistema, que devido à sua baixa complexidade, pode ser um sistema RadCom interessante para os futuros sistemas sem fios.Mestrado em Engenharia Eletrónica e Telecomunicaçõe
    corecore