179 research outputs found

    Design and performance analysis of human body communication digital transceiver for wireless body area network applications

    Get PDF
    Wireless body area network (WBAN) is a prominent technology for resolving health-care concerns and providing high-speed continuous monitoring and real-time help. Human body communication (HBC) is an IEEE 802.15.6 physical layer standard for short-range communications that is not reliant on radio frequency (RF). Most WBAN applications can benefit from the HBC's low-latency and low-power architectural features. In this manuscript, an efficient digital HBC transceiver (TR) hardware architecture is designed as per IEEE 802.15.6 standard to overcome the drawbacks of the RF-wireless communication standards like signal leakage, on body antenna and power consumption. The design is created using a frequency selective digital transmission scheme for transmitter and receiver modules. The design resources are analyzed using different field programmable gate array (FPGA) families. The HBC TR utilizes <1% slices, consumes 101 mW power, and provides a throughput of 24.31 Mbps on Artix-7 FPGA with a latency of 10.5 clock cycles. In addition, the less than 10-4bit error rate of HBC is achieved with a 9.52 Mbps data rate. The proposed work is compared with existing architectures with significant improvement in performance parameters like chip area, power, and data rate

    Critical data-based incremental cooperative communication for wireless body area network

    Get PDF
    Wireless Body Area Networks (WBANs) are single-hop network systems, where sensors gather the body’s vital signs and send them directly to master nodes (MNs). The sensors are distributed in or on the body. Therefore, body posture, clothing, muscle movement, body temperature, and climatic conditions generally influence the quality of the wireless link between sensors and the destination. Hence, in some cases, single hop transmission (‘direct transmission’) is not sufficient to deliver the signals to the destination. Therefore, we propose an emergency-based cooperative communication protocol for WBAN, named Critical Data-based Incremental Cooperative Communication (CD-ICC), based on the IEEE 802.15.6 CSMA standard but assuming a lognormal shadowing channel model. In this paper, a complete study of a system model is inspected in the terms of the channel path loss, the successful transmission probability, and the outage probability. Then a mathematical model is derived for the proposed protocol, end-to-end delay, duty cycle, and average power consumption. A new back-off time is proposed within CD-ICC, which ensures the best relays cooperate in a distributed manner. The design objective of the CD-ICC is to reduce the end-to-end delay, the duty cycle, and the average power transmission. The simulation and numerical results presented here show that, under general conditions, CD-ICC can enhance network performance compared to direct transmission mode (DTM) IEEE 802.15.6 CSMA and benchmarking. To this end, we have shown that the power saving when using CD-ICC is 37.5% with respect to DTM IEEE 802.15.6 CSMA and 10% with respect to MI-ICC

    Enhancement of the duty cycle cooperative medium access control for wireless body area networks

    Get PDF
    This paper presents a novel energy-efficient and reliable connection to enhance the transmission of data over a shared medium for wireless body area networks (WBAN). We propose a novel protocol of two master nodes-based cooperative protocol. In the proposed protocol, two master nodes were considered, that is, the belt master node and the outer body master node. The master nodes work cooperatively to avoid the retransmission process by sensors due to fading and collision, reducing the bit error rate (BER), which results in a reduction of the duty cycle and average transmission power. In addition, we have also presented a mathematical model of the duty cycle with the proposed protocol for the WBAN. The results show that the proposed cooperative protocol reduced the BER by a factor of 4. The average transmission power is reduced by a factor of 0.21 and this shows the potential of the proposed technique to be used in future wearable wireless sensors and systems

    Comparative study of IEEE 802.15.4 and IEEE 802.15.6 for WBAN-based CANet

    Get PDF
    International audienceIn this paper, we present an overview of IEEE 802.15.4 and 802.15.6 standards. Thereafter, in view of their various strengths and many similarities, we study the possibility of using one of these two norms to implement the body area network (WBAN) of CANet (an innovative ehealth project) scenario according to the nature of the studied sensors. To do so, we considered an hybrid differentiation layer, previously proposed, based on 802.15.4 and we made a classification of CANet ehealth sensors based on IEEE 802.15.6 native superframe periods and priority and service differentiation systems. Each choice between them has its advantages and disadvantages. Thus, it will be necessary to analyse in detail the simulation and prototyping results of 802.15.4 and 802.15.6 norms once implemented in CANet context in order to decide about the standard providing the optimal QoS

    Adaptive parameters adjustment in WBAN to mitigate Wi-Fi interferences

    Get PDF
    Wireless Body Area Network (WBAN), called also Wireless Body Sensor Network (WBSN), is composed of a set of tiny wireless devices (sensors) attached, implanted or ingested into the body. It offers real time and ubiquitous applications thanks to the small form, the lightness, and the wireless interface of sensors. WBAN performance is expected to be considerably degraded in the presence of Wi-Fi networks. Their operating channels overlap in the 2.4 GHz Industrial Scientific and Medical (ISM) band which produces interference when they transmit data, accompanied by data losses and quick battery exhaustion. Therefore, it is crucial to mitigate the interference between WBAN and Wi-Fi networks in order to maintain the efficiency and the reliability of the WBAN system. Proposals in the literature use an added complex hardware in WBAN system, or perform the exchange of additional information, or establish expensive communications, or affect the quality of service of the WBAN. Unlike previous researches, we proposed simple, low cost and dynamic method that adaptively adjusts specific parameters in the Medium Access Control (MAC) layer. We have proved the effectiveness of our approach based on theoretical analysis and simulation using MiXiM framework of OMNet++ simulato

    A Proposal for Network Coding with the IEEE 802.15.6 Standard

    Get PDF
    We examine the Medium Access Control sublayer of the IEEE 802.15.6 Wireless Body Area Network (WBAN) standard, and propose minor modifications to the standard so that linear random network coding can be included to help improve energy efficiency and throughput of WBANs compatible with the standard. Both generation-based and sliding window approaches are possible, and a group-block acknowledgment scheme can be implemented by modifying block acknowledgment control type frames. Discussions on potential energy and throughput advantages of network coding are provided.Semiconductor Research Corporation. Interconnect Focus Center (Subcontract RA306-S1

    A game theory control scheme in medium access for wireless body area network

    Full text link
    Wireless Body Area Network (WBAN) has been considered for applications in medical, healthcare and sports fields. Although there are several protocols for wireless personal area networks, specific features and reliability requirements in WBAN bring new challenges in protocol design. An appropriate control scheme in the MAC layer can make a significant improvement in network performance. Based on traffic priority and prior knowledge this paper proposes a game theoretical framework to smartly control access in contention period and contention free period as defined in IEEE 802.15.6 standard. The coordinator controls access probability of contention period based on users' priority in CSMA/CA and allocates suitable slots with strategies for best payoff based on link states in guaranteed time slots (GTS). The simulation results show the improved performance especially in heavily loaded channel condition when the optimal control mode is applied

    Diseños de capa cruzada para redes inalámbricas de área corporal energéticamente eficientes: una revisión

    Get PDF
    RESUMEN: El diseño de capa cruzada se considera una poderosa alternativa para dar solución a las complejidades introducidas por las comunicaciones inalámbricas en redes de área corporal (WBAN), donde el modelo clásico de comunicaciones no ha exhibido un desempeño adecuado. Respecto al problema puntual de consumo de energía, hemos preparado la presente revisión de las publicaciones más relevantes que tratan la eficiencia energética para WBAN usando diseño de capa cruzada. En este artículo se proporciona una revisión exhaustiva de los avances en aproximaciones, protocolos y optimizaciones de capa cruzada cuyo objetivo es incrementar el tiempo de vida de las redes WBAN mediante el ahorro de energía. Luego, se discute los aspectos relevantes y deficiencias de las técnicas de capa cruzada energéticamente eficientes. Además, se introducen aspectos de investigación abiertos y retos en el diseño de capa cruzada para WBAN. En esta revisión proponemos una taxonomía de las aproximaciones de capa cruzada, de modo que las técnicas revisadas se ajustan en categorías de acuerdo a los protocolos involucrados en el diseño. Una clasificación novedosa se incluye para hacer claridad en los conceptos teóricos involucrados en cada esquema de capa cruzada y para luego agrupar aproximaciones similares evidenciando las diferencias con otras técnicas entre sí. Nuestras conclusiones consideran los aspectos de movilidad y modelamiento del canal en escenarios de WBAN como las direcciones para futura investigación en WBAN y en aplicaciones de telemedicina.ABSTRACT: Cross-layer design is considered a powerful alternative to solve the complexities of wireless communication in wireless body area networks (WBAN), where the classical communication model has been shown to be inaccurate. Regarding the energy consumption problem, we have prepared a current survey of the most relevant scientific publications on energy-efficient cross-layer design for WBAN. In this paper, we provide a comprehensive review of the advances in cross-layer approaches, protocols and optimizations aimed at increasing the network lifetime by saving energy in WBANs. Subsequently, we discuss the relevant aspects and shortcomings of these energy-efficient cross-layer techniques and point out the open research issues and challenges in WBAN cross-layer design. In this survey, we propose a taxonomy for cross-layer approaches to fit them into categories based on the protocols involved in the cross-layer scheme. A novel classification is included to clarify the theoretical concepts behind each cross-layer scheme; and to group similar approaches by establishing their differences from the other strategies reviewed. Our conclusion considers the aspects of mobility and channel modeling in WBAN scenarios as the directions of future cross-layer research for WBAN and telemedicine applications

    Cross-layer MAC/routing protocol for reliable communication in Internet of Health Things

    Get PDF
    Internet of Health Things (IoHT) involves intelligent, low-powered, and miniaturized sensors nodes that measure physiological signals and report them to sink nodes over wireless links. IoHTs have a myriad of applications in e-health and personal health monitoring. Because of the data’s sensitivity measured by the nodes and power-constraints of the sensor nodes, reliability and energy-efficiency play a critical role in communication in IoHT. Reliability is degraded by the increase in packets’ loss due to inefficient MAC, routing protocols, environmental interference, and body shadowing. Simultaneously, inefficient node selection for routing may cause the depletion of critical nodes’ energy resources. Recent advancements in cross-layer protocol optimizations have proven their efficiency for packet-based Internet. In this article, we propose a MAC/Routing-based Cross-layer protocol for reliable communication while preserving the sensor nodes’ energy resource in IoHT. The proposed mechanism employs a timer-based strategy for relay node selection. The timer-based approach incorporates the metrics for residual energy and received signal strength indicator to preserve the vital underlying resources of critical sensors in IoHT. The proposed approach is also extended for multiple sensor networks, where sensor in vicinity are coordinating and cooperating for data forwarding. The performance of the proposed technique is evaluated for metrics like Packet Loss Probability, End-To-End delay, and energy used per data packet. Extensive simulation results show that the proposed technique improves the reliability and energy-efficiency compared to the Simple Opportunistic Routing protocol
    corecore