767 research outputs found

    Multicast Network Design Game on a Ring

    Full text link
    In this paper we study quality measures of different solution concepts for the multicast network design game on a ring topology. We recall from the literature a lower bound of 4/3 and prove a matching upper bound for the price of stability, which is the ratio of the social costs of a best Nash equilibrium and of a general optimum. Therefore, we answer an open question posed by Fanelli et al. in [12]. We prove an upper bound of 2 for the ratio of the costs of a potential optimizer and of an optimum, provide a construction of a lower bound, and give a computer-assisted argument that it reaches 22 for any precision. We then turn our attention to players arriving one by one and playing myopically their best response. We provide matching lower and upper bounds of 2 for the myopic sequential price of anarchy (achieved for a worst-case order of the arrival of the players). We then initiate the study of myopic sequential price of stability and for the multicast game on the ring we construct a lower bound of 4/3, and provide an upper bound of 26/19. To the end, we conjecture and argue that the right answer is 4/3.Comment: 12 pages, 4 figure

    On a Bounded Budget Network Creation Game

    Full text link
    We consider a network creation game in which each player (vertex) has a fixed budget to establish links to other players. In our model, each link has unit price and each agent tries to minimize its cost, which is either its local diameter or its total distance to other players in the (undirected) underlying graph of the created network. Two versions of the game are studied: in the MAX version, the cost incurred to a vertex is the maximum distance between the vertex and other vertices, and in the SUM version, the cost incurred to a vertex is the sum of distances between the vertex and other vertices. We prove that in both versions pure Nash equilibria exist, but the problem of finding the best response of a vertex is NP-hard. We take the social cost of the created network to be its diameter, and next we study the maximum possible diameter of an equilibrium graph with n vertices in various cases. When the sum of players' budgets is n-1, the equilibrium graphs are always trees, and we prove that their maximum diameter is Theta(n) and Theta(log n) in MAX and SUM versions, respectively. When each vertex has unit budget (i.e. can establish link to just one vertex), the diameter of any equilibrium graph in either version is Theta(1). We give examples of equilibrium graphs in the MAX version, such that all vertices have positive budgets and yet the diameter is Omega(sqrt(log n)). This interesting (and perhaps counter-intuitive) result shows that increasing the budgets may increase the diameter of equilibrium graphs and hence deteriorate the network structure. Then we prove that every equilibrium graph in the SUM version has diameter 2^O(sqrt(log n)). Finally, we show that if the budget of each player is at least k, then every equilibrium graph in the SUM version is k-connected or has diameter smaller than 4.Comment: 28 pages, 3 figures, preliminary version appeared in SPAA'1
    • …
    corecore