34,252 research outputs found

    Conditionally Optimal Algorithms for Generalized B\"uchi Games

    Get PDF
    Games on graphs provide the appropriate framework to study several central problems in computer science, such as the verification and synthesis of reactive systems. One of the most basic objectives for games on graphs is the liveness (or B\"uchi) objective that given a target set of vertices requires that some vertex in the target set is visited infinitely often. We study generalized B\"uchi objectives (i.e., conjunction of liveness objectives), and implications between two generalized B\"uchi objectives (known as GR(1) objectives), that arise in numerous applications in computer-aided verification. We present improved algorithms and conditional super-linear lower bounds based on widely believed assumptions about the complexity of (A1) combinatorial Boolean matrix multiplication and (A2) CNF-SAT. We consider graph games with nn vertices, mm edges, and generalized B\"uchi objectives with kk conjunctions. First, we present an algorithm with running time O(kn2)O(k \cdot n^2), improving the previously known O(knm)O(k \cdot n \cdot m) and O(k2n2)O(k^2 \cdot n^2) worst-case bounds. Our algorithm is optimal for dense graphs under (A1). Second, we show that the basic algorithm for the problem is optimal for sparse graphs when the target sets have constant size under (A2). Finally, we consider GR(1) objectives, with k1k_1 conjunctions in the antecedent and k2k_2 conjunctions in the consequent, and present an O(k1k2n2.5)O(k_1 \cdot k_2 \cdot n^{2.5})-time algorithm, improving the previously known O(k1k2nm)O(k_1 \cdot k_2 \cdot n \cdot m)-time algorithm for m>n1.5m > n^{1.5}

    Faster Algorithms for Rectangular Matrix Multiplication

    Full text link
    Let {\alpha} be the maximal value such that the product of an n x n^{\alpha} matrix by an n^{\alpha} x n matrix can be computed with n^{2+o(1)} arithmetic operations. In this paper we show that \alpha>0.30298, which improves the previous record \alpha>0.29462 by Coppersmith (Journal of Complexity, 1997). More generally, we construct a new algorithm for multiplying an n x n^k matrix by an n^k x n matrix, for any value k\neq 1. The complexity of this algorithm is better than all known algorithms for rectangular matrix multiplication. In the case of square matrix multiplication (i.e., for k=1), we recover exactly the complexity of the algorithm by Coppersmith and Winograd (Journal of Symbolic Computation, 1990). These new upper bounds can be used to improve the time complexity of several known algorithms that rely on rectangular matrix multiplication. For example, we directly obtain a O(n^{2.5302})-time algorithm for the all-pairs shortest paths problem over directed graphs with small integer weights, improving over the O(n^{2.575})-time algorithm by Zwick (JACM 2002), and also improve the time complexity of sparse square matrix multiplication.Comment: 37 pages; v2: some additions in the acknowledgment

    The Quantum Query Complexity of Algebraic Properties

    Full text link
    We present quantum query complexity bounds for testing algebraic properties. For a set S and a binary operation on S, we consider the decision problem whether SS is a semigroup or has an identity element. If S is a monoid, we want to decide whether S is a group. We present quantum algorithms for these problems that improve the best known classical complexity bounds. In particular, we give the first application of the new quantum random walk technique by Magniez, Nayak, Roland, and Santha that improves the previous bounds by Ambainis and Szegedy. We also present several lower bounds for testing algebraic properties.Comment: 13 pages, 0 figure

    Dominance Product and High-Dimensional Closest Pair under LL_\infty

    Get PDF
    Given a set SS of nn points in Rd\mathbb{R}^d, the Closest Pair problem is to find a pair of distinct points in SS at minimum distance. When dd is constant, there are efficient algorithms that solve this problem, and fast approximate solutions for general dd. However, obtaining an exact solution in very high dimensions seems to be much less understood. We consider the high-dimensional LL_\infty Closest Pair problem, where d=nrd=n^r for some r>0r > 0, and the underlying metric is LL_\infty. We improve and simplify previous results for LL_\infty Closest Pair, showing that it can be solved by a deterministic strongly-polynomial algorithm that runs in O(DP(n,d)logn)O(DP(n,d)\log n) time, and by a randomized algorithm that runs in O(DP(n,d))O(DP(n,d)) expected time, where DP(n,d)DP(n,d) is the time bound for computing the {\em dominance product} for nn points in Rd\mathbb{R}^d. That is a matrix DD, such that D[i,j]={kpi[k]pj[k]}D[i,j] = \bigl| \{k \mid p_i[k] \leq p_j[k]\} \bigr|; this is the number of coordinates at which pjp_j dominates pip_i. For integer coordinates from some interval [M,M][-M, M], we obtain an algorithm that runs in O~(min{Mnω(1,r,1),DP(n,d)})\tilde{O}\left(\min\{Mn^{\omega(1,r,1)},\, DP(n,d)\}\right) time, where ω(1,r,1)\omega(1,r,1) is the exponent of multiplying an n×nrn \times n^r matrix by an nr×nn^r \times n matrix. We also give slightly better bounds for DP(n,d)DP(n,d), by using more recent rectangular matrix multiplication bounds. Computing the dominance product itself is an important task, since it is applied in many algorithms as a major black-box ingredient, such as algorithms for APBP (all pairs bottleneck paths), and variants of APSP (all pairs shortest paths)
    corecore