7,407 research outputs found

    Prediction of survival probabilities with Bayesian Decision Trees

    Get PDF
    Practitioners use Trauma and Injury Severity Score (TRISS) models for predicting the survival probability of an injured patient. The accuracy of TRISS predictions is acceptable for patients with up to three typical injuries, but unacceptable for patients with a larger number of injuries or with atypical injuries. Based on a regression model, the TRISS methodology does not provide the predictive density required for accurate assessment of risk. Moreover, the regression model is difficult to interpret. We therefore consider Bayesian inference for estimating the predictive distribution of survival. The inference is based on decision tree models which recursively split data along explanatory variables, and so practitioners can understand these models. We propose the Bayesian method for estimating the predictive density and show that it outperforms the TRISS method in terms of both goodness-of-fit and classification accuracy. The developed method has been made available for evaluation purposes as a stand-alone application

    Deep Learning How to Fit an Intravoxel Incoherent Motion Model to Diffusion-Weighted MRI

    Full text link
    Purpose: This prospective clinical study assesses the feasibility of training a deep neural network (DNN) for intravoxel incoherent motion (IVIM) model fitting to diffusion-weighted magnetic resonance imaging (DW-MRI) data and evaluates its performance. Methods: In May 2011, ten male volunteers (age range: 29 to 53 years, mean: 37 years) underwent DW-MRI of the upper abdomen on 1.5T and 3.0T magnetic resonance scanners. Regions of interest in the left and right liver lobe, pancreas, spleen, renal cortex, and renal medulla were delineated independently by two readers. DNNs were trained for IVIM model fitting using these data; results were compared to least-squares and Bayesian approaches to IVIM fitting. Intraclass Correlation Coefficients (ICC) were used to assess consistency of measurements between readers. Intersubject variability was evaluated using Coefficients of Variation (CV). The fitting error was calculated based on simulated data and the average fitting time of each method was recorded. Results: DNNs were trained successfully for IVIM parameter estimation. This approach was associated with high consistency between the two readers (ICCs between 50 and 97%), low intersubject variability of estimated parameter values (CVs between 9.2 and 28.4), and the lowest error when compared with least-squares and Bayesian approaches. Fitting by DNNs was several orders of magnitude quicker than the other methods but the networks may need to be re-trained for different acquisition protocols or imaged anatomical regions. Conclusion: DNNs are recommended for accurate and robust IVIM model fitting to DW-MRI data. Suitable software is available at (1)
    • …
    corecore