3 research outputs found

    How important are activation functions in regression and classification? A survey, performance comparison, and future directions

    Full text link
    Inspired by biological neurons, the activation functions play an essential part in the learning process of any artificial neural network commonly used in many real-world problems. Various activation functions have been proposed in the literature for classification as well as regression tasks. In this work, we survey the activation functions that have been employed in the past as well as the current state-of-the-art. In particular, we present various developments in activation functions over the years and the advantages as well as disadvantages or limitations of these activation functions. We also discuss classical (fixed) activation functions, including rectifier units, and adaptive activation functions. In addition to discussing the taxonomy of activation functions based on characterization, a taxonomy of activation functions based on applications is presented. To this end, the systematic comparison of various fixed and adaptive activation functions is performed for classification data sets such as the MNIST, CIFAR-10, and CIFAR- 100. In recent years, a physics-informed machine learning framework has emerged for solving problems related to scientific computations. For this purpose, we also discuss various requirements for activation functions that have been used in the physics-informed machine learning framework. Furthermore, various comparisons are made among different fixed and adaptive activation functions using various machine learning libraries such as TensorFlow, Pytorch, and JAX.Comment: 28 pages, 15 figure

    Probabilistic modeling for single-photon lidar

    Full text link
    Lidar is an increasingly prevalent technology for depth sensing, with applications including scientific measurement and autonomous navigation systems. While conventional systems require hundreds or thousands of photon detections per pixel to form accurate depth and reflectivity images, recent results for single-photon lidar (SPL) systems using single-photon avalanche diode (SPAD) detectors have shown accurate images formed from as little as one photon detection per pixel, even when half of those detections are due to uninformative ambient light. The keys to such photon-efficient image formation are two-fold: (i) a precise model of the probability distribution of photon detection times, and (ii) prior beliefs about the structure of natural scenes. Reducing the number of photons needed for accurate image formation enables faster, farther, and safer acquisition. Still, such photon-efficient systems are often limited to laboratory conditions more favorable than the real-world settings in which they would be deployed. This thesis focuses on expanding the photon detection time models to address challenging imaging scenarios and the effects of non-ideal acquisition equipment. The processing derived from these enhanced models, sometimes modified jointly with the acquisition hardware, surpasses the performance of state-of-the-art photon counting systems. We first address the problem of high levels of ambient light, which causes traditional depth and reflectivity estimators to fail. We achieve robustness to strong ambient light through a rigorously derived window-based censoring method that separates signal and background light detections. Spatial correlations both within and between depth and reflectivity images are encoded in superpixel constructions, which fill in holes caused by the censoring. Accurate depth and reflectivity images can then be formed with an average of 2 signal photons and 50 background photons per pixel, outperforming methods previously demonstrated at a signal-to-background ratio of 1. We next approach the problem of coarse temporal resolution for photon detection time measurements, which limits the precision of depth estimates. To achieve sub-bin depth precision, we propose a subtractively-dithered lidar implementation, which uses changing synchronization delays to shift the time-quantization bin edges. We examine the generic noise model resulting from dithering Gaussian-distributed signals and introduce a generalized Gaussian approximation to the noise distribution and simple order statistics-based depth estimators that take advantage of this model. Additional analysis of the generalized Gaussian approximation yields rules of thumb for determining when and how to apply dither to quantized measurements. We implement a dithered SPL system and propose a modification for non-Gaussian pulse shapes that outperforms the Gaussian assumption in practical experiments. The resulting dithered-lidar architecture could be used to design SPAD array detectors that can form precise depth estimates despite relaxed temporal quantization constraints. Finally, SPAD dead time effects have been considered a major limitation for fast data acquisition in SPL, since a commonly adopted approach for dead time mitigation is to operate in the low-flux regime where dead time effects can be ignored. We show that the empirical distribution of detection times converges to the stationary distribution of a Markov chain and demonstrate improvements in depth estimation and histogram correction using our Markov chain model. An example simulation shows that correctly compensating for dead times in a high-flux measurement can yield a 20-times speed up of data acquisition. The resulting accuracy at high photon flux could enable real-time applications such as autonomous navigation

    Improved Learning in Convolutional Neural Networks with Shifted Exponential Linear Units (ShELUs)

    No full text
    The Exponential Linear Unit (ELU) has been proven to speed up learning and improve the classification performance over activation functions such as ReLU and Leaky ReLU for convolutional neural networks. The reasons behind the improved behavior are that ELU reduces the bias shift, it saturates for large negative inputs and it is continuously differentiable. However, it remains open whether ELU has the optimal shape and we address the quest for a superior activation function.We use a new formulation to tune a piecewise linear activation function during training, to investigate the above question, and learn the shape of the locally optimal activation function. With this tuned activation function, the classification performance is improved and the resulting, learned activation function shows to be ELU-shaped irrespective if it is initialized as a RELU, LReLU or ELU. Interestingly, the learned activation function does not exactly pass through the origin indicating that a shifted ELU-shaped activation function is preferable. This observation leads us to introduce the Shifted Exponential Linear Unit (ShELU) as a new activation function.Experiments on Cifar-100 show that the classification performance is further improved when using the ShELU activation function in comparison with ELU. The improvement is achieved when learning an individual bias shift for each neuron.Funding agencies:  Wallenberg AI, Autonomous Systems and Software Program (WASP) - Knut and Alice Wallenberg Foundation; Swedish Research Council [2014-6227]</p
    corecore