1,142 research outputs found

    Interactive high fidelity visualization of complex materials on the GPU

    Get PDF
    Documento submetido para revisão pelos pares. A publicar em Computers & Graphics. ISSN 0097-8493. 37:7 (nov. 2013) p. 809–819High fidelity interactive rendering is of major importance for footwear designers, since it allows experimenting with virtual prototypes of new products, rather than producing expensive physical mock-ups. This requires capturing the appearance of complex materials by resorting to image based approaches, such as the Bidirectional Texture Function (BTF), to allow subsequent interactive visualization, while still maintaining the capability to edit the materials' appearance. However, interactive global illumination rendering of compressed editable BTFs with ordinary computing resources remains to be demonstrated. In this paper we demonstrate interactive global illumination by using a GPU ray tracing engine and the Sparse Parametric Mixture Model representation of BTFs, which is particularly well suited for BTF editing. We propose a rendering pipeline and data layout which allow for interactive frame rates and provide a scalability analysis with respect to the scene's complexity. We also include soft shadows from area light sources and approximate global illumination with ambient occlusion by resorting to progressive refinement, which quickly converges to an high quality image while maintaining interactive frame rates by limiting the number of rays shot per frame. Acceptable performance is also demonstrated under dynamic settings, including camera movements, changing lighting conditions and dynamic geometry.Work partially funded by QREN project nbr. 13114 TOPICShoe and by National Funds through the FCT - Fundação para a Ciência e a Tecnologia (Portuguese Foundation for Science and Technology) within projectPEst-OE/EEI/UI0752/2011

    Analysis of Human Faces Using a Measurement-Based Skin Reflectance Model

    Get PDF
    We have measured 3D face geometry, skin reflectance, and subsurface scattering using custom-built devices for 149 subjects of varying age, gender, and race. We developed a novel skin reflectance model whose parameters can be estimated from measurements. The model decomposes the large amount of measured skin data into a spatially-varying analytic BRDF, a diffuse albedo map, and diffuse subsurface scattering. Our model is intuitive, physically plausible, and -- since we do not use the original measured data -- easy to edit as well. High-quality renderings come close to reproducing real photographs. The analysis of the model parameters for our sample population reveals variations according to subject age, gender, skin type, and external factors (e.g., sweat, cold, or makeup). Using our statistics, a user can edit the overall appearance of a face (e.g., changing skin type and age) or change small-scale features using texture synthesis (e.g., adding moles and freckles). We are making the collected statistics publicly available to the research community for applications in face synthesis and analysis.Engineering and Applied Science

    A survey of face recognition techniques under occlusion

    Get PDF
    The limited capacity to recognize faces under occlusions is a long-standing problem that presents a unique challenge for face recognition systems and even for humans. The problem regarding occlusion is less covered by research when compared to other challenges such as pose variation, different expressions, etc. Nevertheless, occluded face recognition is imperative to exploit the full potential of face recognition for real-world applications. In this paper, we restrict the scope to occluded face recognition. First, we explore what the occlusion problem is and what inherent difficulties can arise. As a part of this review, we introduce face detection under occlusion, a preliminary step in face recognition. Second, we present how existing face recognition methods cope with the occlusion problem and classify them into three categories, which are 1) occlusion robust feature extraction approaches, 2) occlusion aware face recognition approaches, and 3) occlusion recovery based face recognition approaches. Furthermore, we analyze the motivations, innovations, pros and cons, and the performance of representative approaches for comparison. Finally, future challenges and method trends of occluded face recognition are thoroughly discussed

    High-quality face capture, animation and editing from monocular video

    Get PDF
    Digitization of virtual faces in movies requires complex capture setups and extensive manual work to produce superb animations and video-realistic editing. This thesis pushes the boundaries of the digitization pipeline by proposing automatic algorithms for high-quality 3D face capture and animation, as well as photo-realistic face editing. These algorithms reconstruct and modify faces in 2D videos recorded in uncontrolled scenarios and illumination. In particular, advances in three main areas offer solutions for the lack of depth and overall uncertainty in video recordings. First, contributions in capture include model-based reconstruction of detailed, dynamic 3D geometry that exploits optical and shading cues, multilayer parametric reconstruction of accurate 3D models in unconstrained setups based on inverse rendering, and regression-based 3D lip shape enhancement from high-quality data. Second, advances in animation are video-based face reenactment based on robust appearance metrics and temporal clustering, performance-driven retargeting of detailed facial models in sync with audio, and the automatic creation of personalized controllable 3D rigs. Finally, advances in plausible photo-realistic editing are dense face albedo capture and mouth interior synthesis using image warping and 3D teeth proxies. High-quality results attained on challenging application scenarios confirm the contributions and show great potential for the automatic creation of photo-realistic 3D faces.Die Digitalisierung von Gesichtern zum Einsatz in der Filmindustrie erfordert komplizierte Aufnahmevorrichtungen und die manuelle Nachbearbeitung von Rekonstruktionen, um perfekte Animationen und realistische Videobearbeitung zu erzielen. Diese Dissertation erweitert vorhandene Digitalisierungsverfahren durch die Erforschung von automatischen Verfahren zur qualitativ hochwertigen 3D Rekonstruktion, Animation und Modifikation von Gesichtern. Diese Algorithmen erlauben es, Gesichter in 2D Videos, die unter allgemeinen Bedingungen und unbekannten Beleuchtungsverhältnissen aufgenommen wurden, zu rekonstruieren und zu modifizieren. Vor allem Fortschritte in den folgenden drei Hauptbereichen tragen zur Kompensation von fehlender Tiefeninformation und der allgemeinen Mehrdeutigkeit von 2D Videoaufnahmen bei. Erstens, Beiträge zur modellbasierten Rekonstruktion von detaillierter und dynamischer 3D Geometrie durch optische Merkmale und die Shading-Eigenschaften des Gesichts, mehrschichtige parametrische Rekonstruktion von exakten 3D Modellen mittels inversen Renderings in allgemeinen Szenen und regressionsbasierter 3D Lippenformverfeinerung mittels qualitativ hochwertigen Daten. Zweitens, Fortschritte im Bereich der Computeranimation durch videobasierte Gesichtsausdrucksübertragung und temporaler Clusterbildung, Übertragung von detaillierten Gesichtsmodellen, deren Mundbewegung mit Ton synchronisiert ist, und die automatische Erstellung von personalisierten "3D Face Rigs". Schließlich werden Fortschritte im Bereich der realistischen Videobearbeitung vorgestellt, welche auf der dichten Rekonstruktion von Hautreflektionseigenschaften und der Mundinnenraumsynthese mittels bildbasierten und geometriebasierten Verfahren aufbauen. Qualitativ hochwertige Ergebnisse in anspruchsvollen Anwendungen untermauern die Wichtigkeit der geleisteten Beiträgen und zeigen das große Potential der automatischen Erstellung von realistischen digitalen 3D Gesichtern auf

    Patternshop: Editing Point Patterns by Image Manipulation

    Full text link
    Point patterns are characterized by their density and correlation. While spatial variation of density is well-understood, analysis and synthesis of spatially-varying correlation is an open challenge. No tools are available to intuitively edit such point patterns, primarily due to the lack of a compact representation for spatially varying correlation. We propose a low-dimensional perceptual embedding for point correlations. This embedding can map point patterns to common three-channel raster images, enabling manipulation with off-the-shelf image editing software. To synthesize back point patterns, we propose a novel edge-aware objective that carefully handles sharp variations in density and correlation. The resulting framework allows intuitive and backward-compatible manipulation of point patterns, such as recoloring, relighting to even texture synthesis that have not been available to 2D point pattern design before. Effectiveness of our approach is tested in several user experiments.Comment: 14 pages, 16 figure
    • …
    corecore