59 research outputs found

    New Tools and Connections for Exponential-Time Approximation

    Get PDF
    In this paper, we develop new tools and connections for exponential time approximation. In this setting, we are given a problem instance and an integer r>1, and the goal is to design an approximation algorithm with the fastest possible running time. We give randomized algorithms that establish an approximation ratio of 1. r for maximum independent set in O∗(exp(O~(n/rlog2r+rlog2r))) time, 2. r for chromatic number in O∗(exp(O~(n/rlogr+rlog2r))) time, 3. (2−1/r) for minimum vertex cover in O∗(exp(n/rΩ(r))) time, and 4. (k−1/r) for minimum k-hypergraph vertex cover in O∗(exp(n/(kr)Ω(kr))) time. (Throughout, O~ and O∗ omit polyloglog(r) and factors polynomial in the input size, respectively.) The best known time bounds for all problems were O∗(2n/r) (Bourgeois et al. i

    Approximability of Sparse Integer Programs

    Get PDF
    The main focus of this paper is a pair of new approximation algorithms for certain integer programs. First, for covering integer programs {min cx: Ax >= b, 0 <= x <= d} where A has at most k nonzeroes per row, we give a k-approximation algorithm. (We assume A, b, c, d are nonnegative.) For any k >= 2 and eps>0, if P != NP this ratio cannot be improved to k-1-eps, and under the unique games conjecture this ratio cannot be improved to k-eps. One key idea is to replace individual constraints by others that have better rounding properties but the same nonnegative integral solutions; another critical ingredient is knapsack-cover inequalities. Second, for packing integer programs {max cx: Ax <= b, 0 <= x <= d} where A has at most k nonzeroes per column, we give a (2k^2+2)-approximation algorithm. Our approach builds on the iterated LP relaxation framework. In addition, we obtain improved approximations for the second problem when k=2, and for both problems when every A_{ij} is small compared to b_i. Finally, we demonstrate a 17/16-inapproximability for covering integer programs with at most two nonzeroes per column.Comment: Version submitted to Algorithmica special issue on ESA 2009. Previous conference version: http://dx.doi.org/10.1007/978-3-642-04128-0_

    Clustering affine subspaces: hardness and algorithms

    Get PDF
    We study a generalization of the famous k-center problem where each object is an affine subspace of dimension Δ, and give either the first or significantly improved algorithms and hardness results for many combinations of parameters. This generalization from points (Δ = 0) is motivated by the analysis of incomplete data, a pervasive challenge in statistics: incomplete data objects in ℝd can be modeled as affine subspaces. We give three algorithmic results for different values of k, under the assumption that all subspaces are axis-parallel, the main case of interest because of the correspondence to missing entries in data tables. 1) k = 1: Two polynomial time approximation schemes which runs in poly (Δ, 1/∊)nd. 2) k = 2: O(Δ1/4)-approximation algorithm which runs in poly(n, d, Δ) 3) General k: Polynomial time approximation scheme which runs in We also prove nearly matching hardness results; in both the general (not necessarily axis-parallel) case (for k ≥ 2) and in the axis-parallel case (for k ≥ 3), the running time of an approximation algorithm with any approximation ratio cannot be polynomial in even one of k and Δ, unless P = NP. Furthermore, assuming that the 3-SAT problem cannot be solved sub-exponentially, the dependence on both k and Δ must be exponential in the general case (in the axis-parallel case, only the dependence on k drops to . The simplicity of the first and the third algorithm suggests that they might be actually used in statistical applications. The second algorithm, which demonstrates a theoretical gap between the axis-parallel and general case for k = 2, displays a strong connection between geometric clustering and classical coloring problems on graphs and hypergraphs, via a new Helly-type theorem

    On k-Column Sparse Packing Programs

    Full text link
    We consider the class of packing integer programs (PIPs) that are column sparse, i.e. there is a specified upper bound k on the number of constraints that each variable appears in. We give an (ek+o(k))-approximation algorithm for k-column sparse PIPs, improving on recent results of k22kk^2\cdot 2^k and O(k2)O(k^2). We also show that the integrality gap of our linear programming relaxation is at least 2k-1; it is known that k-column sparse PIPs are Ω(k/logk)\Omega(k/ \log k)-hard to approximate. We also extend our result (at the loss of a small constant factor) to the more general case of maximizing a submodular objective over k-column sparse packing constraints.Comment: 19 pages, v3: additional detail

    Sub-exponential Approximation Schemes for CSPs: From Dense to Almost Sparse

    Get PDF
    It has long been known, since the classical work of (Arora, Karger, Karpinski, JCSS\u2799), that MAX-CUT admits a PTAS on dense graphs, and more generally, MAX-k-CSP admits a PTAS on "dense" instances with Omega(n^k) constraints. In this paper we extend and generalize their exhaustive sampling approach, presenting a framework for (1-epsilon)-approximating any MAX-k-CSP problem in sub-exponential time while significantly relaxing the denseness requirement on the input instance. Specifically, we prove that for any constants delta in (0, 1] and epsilon > 0, we can approximate MAX-k-CSP problems with Omega(n^{k-1+delta}) constraints within a factor of (1-epsilon) in time 2^{O(n^{1-delta}*ln(n) / epsilon^3)}. The framework is quite general and includes classical optimization problems, such as MAX-CUT, MAX-DICUT, MAX-k-SAT, and (with a slight extension) k-DENSEST SUBGRAPH, as special cases. For MAX-CUT in particular (where k=2), it gives an approximation scheme that runs in time sub-exponential in n even for "almost-sparse" instances (graphs with n^{1+delta} edges). We prove that our results are essentially best possible, assuming the ETH. First, the density requirement cannot be relaxed further: there exists a constant r 0, MAX-k-SAT instances with O(n^{k-1}) clauses cannot be approximated within a ratio better than r in time 2^{O(n^{1-delta})}. Second, the running time of our algorithm is almost tight for all densities. Even for MAX-CUT there exists r delta >0, MAX-CUT instances with n^{1+delta} edges cannot be approximated within a ratio better than r in time 2^{n^{1-delta\u27}}

    An overview on polynomial approximation of NP-hard problems

    Get PDF
    The fact that polynomial time algorithm is very unlikely to be devised for an optimal solving of the NP-hard problems strongly motivates both the researchers and the practitioners to try to solve such problems heuristically, by making a trade-off between computational time and solution's quality. In other words, heuristic computation consists of trying to find not the best solution but one solution which is 'close to' the optimal one in reasonable time. Among the classes of heuristic methods for NP-hard problems, the polynomial approximation algorithms aim at solving a given NP-hard problem in poly-nomial time by computing feasible solutions that are, under some predefined criterion, as near to the optimal ones as possible. The polynomial approximation theory deals with the study of such algorithms. This survey first presents and analyzes time approximation algorithms for some classical examples of NP-hard problems. Secondly, it shows how classical notions and tools of complexity theory, such as polynomial reductions, can be matched with polynomial approximation in order to devise structural results for NP-hard optimization problems. Finally, it presents a quick description of what is commonly called inapproximability results. Such results provide limits on the approximability of the problems tackled

    Partial resampling to approximate covering integer programs

    Full text link
    We consider column-sparse covering integer programs, a generalization of set cover, which have a long line of research of (randomized) approximation algorithms. We develop a new rounding scheme based on the Partial Resampling variant of the Lov\'{a}sz Local Lemma developed by Harris & Srinivasan (2019). This achieves an approximation ratio of 1+ln(Δ1+1)amin+O(log(1+log(Δ1+1)amin)1 + \frac{\ln (\Delta_1+1)}{a_{\min}} + O\Big( \log(1 + \sqrt{ \frac{\log (\Delta_1+1)}{a_{\min}}} \Big), where amina_{\min} is the minimum covering constraint and Δ1\Delta_1 is the maximum 1\ell_1-norm of any column of the covering matrix (whose entries are scaled to lie in [0,1][0,1]). When there are additional constraints on the variable sizes, we show an approximation ratio of lnΔ0+O(loglogΔ0)\ln \Delta_0 + O(\log \log \Delta_0) (where Δ0\Delta_0 is the maximum number of non-zero entries in any column of the covering matrix). These results improve asymptotically, in several different ways, over results of Srinivasan (2006) and Kolliopoulos & Young (2005). We show nearly-matching inapproximability and integrality-gap lower bounds. We also show that the rounding process leads to negative correlation among the variables, which allows us to handle multi-criteria programs
    corecore