1 research outputs found

    Improved Image Splicing Forgery Detection by Combination of Conformable Focus Measures and Focus Measure Operators Applied on Obtained Redundant Discrete Wavelet Transform Coefficients

    No full text
    The image is the best information carrier in the current digital era and the easiest to manipulate. Image manipulation causes the integrity of this information carrier to be ambiguous. The image splicing technique is commonly used to manipulate images by fusing different regions in one image. Over the last decade, it has been confirmed that various structures in science and engineering can be demonstrated more precisely by fractional calculus using integrals or derivative operators. Many fractional-order-based techniques have been used in the image-processing field. Recently, a new specific fractional calculus, called conformable calculus, was delivered. Herein, we employ the combination of conformable focus measures (CFMs), and focus measure operators (FMOs) in obtaining redundant discrete wavelet transform (RDWT) coefficients for improving the image splicing forgery detection. The process of image splicing disorders the content of tampered image and causes abnormality in the image features. The spliced region's boundaries are usually blurring to avoid detection. To make use of the blurred information, both CFMs and FMOs are used to calculate the degree of blurring of the tampered region's boundaries for image splicing detection. The two public image datasets IFS-TC and CASIA TIDE V2 are used for evaluation of the proposed method. The obtained results of the proposed method achieved accuracy rate 98.30% for Cb channel on IFS-TC image dataset and 98.60% of the Cb channel on CASIA TIDE V2 with 24-D feature vector. The proposed method exhibited superior results compared with other image splicing detection methods. © 2019 by the authors
    corecore