21,541 research outputs found

    Object Tracking with Multiple Instance Learning and Gaussian Mixture Model

    Get PDF
    Recently, Multiple Instance Learning (MIL) technique has been introduced for object tracking\linebreak applications, which has shown its good performance to handle drifting problem. While some instances in positive bags not only contain objects, but also contain the background, it is not reliable to simply assume that each feature of instances in positive bags obeys a single Gaussian distribution. In this paper, a tracker based on online multiple instance boosting has been developed, which employs Gaussian Mixture Model (GMM) and single Gaussian distribution respectively to model features of instances in positive and negative bags. The differences between samples and the model are integrated into the process of updating the parameters for GMM. With the Haar-like features extracted from the bags, a set of weak classifiers are trained to construct a strong classifier, which is used to track the object location at a new frame. And the classifier can be updated online frame by frame. Experimental results have shown that our tracker is more stable and efficient when dealing with the illumination, rotation, pose and appearance changes

    Kernel-based high-dimensional histogram estimation for visual tracking

    Get PDF
    ©2008 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or distribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.Presented at the 15th IEEE International Conference on Image Processing, October 12–15, 2008, San Diego, California, U.S.A.DOI: 10.1109/ICIP.2008.4711862We propose an approach for non-rigid tracking that represents objects by their set of distribution parameters. Compared to joint histogram representations, a set of parameters such as mixed moments provides a significantly reduced size representation. The discriminating power is comparable to that of the corresponding full high dimensional histogram yet at far less spatial and computational complexity. The proposed method is robust in the presence of noise and illumination changes, and provides a natural extension to the use of mixture models. Experiments demonstrate that the proposed method outperforms both full color mean-shift and global covariance searches

    Enhancement of ELDA Tracker Based on CNN Features and Adaptive Model Update

    Get PDF
    Appearance representation and the observation model are the most important components in designing a robust visual tracking algorithm for video-based sensors. Additionally, the exemplar-based linear discriminant analysis (ELDA) model has shown good performance in object tracking. Based on that, we improve the ELDA tracking algorithm by deep convolutional neural network (CNN) features and adaptive model update. Deep CNN features have been successfully used in various computer vision tasks. Extracting CNN features on all of the candidate windows is time consuming. To address this problem, a two-step CNN feature extraction method is proposed by separately computing convolutional layers and fully-connected layers. Due to the strong discriminative ability of CNN features and the exemplar-based model, we update both object and background models to improve their adaptivity and to deal with the tradeoff between discriminative ability and adaptivity. An object updating method is proposed to select the “good” models (detectors), which are quite discriminative and uncorrelated to other selected models. Meanwhile, we build the background model as a Gaussian mixture model (GMM) to adapt to complex scenes, which is initialized offline and updated online. The proposed tracker is evaluated on a benchmark dataset of 50 video sequences with various challenges. It achieves the best overall performance among the compared state-of-the-art trackers, which demonstrates the effectiveness and robustness of our tracking algorithm

    Scalable software architecture for on-line multi-camera video processing

    Get PDF
    In this paper we present a scalable software architecture for on-line multi-camera video processing, that guarantees a good trade off between computational power, scalability and flexibility. The software system is modular and its main blocks are the Processing Units (PUs), and the Central Unit. The Central Unit works as a supervisor of the running PUs and each PU manages the acquisition phase and the processing phase. Furthermore, an approach to easily parallelize the desired processing application has been presented. In this paper, as case study, we apply the proposed software architecture to a multi-camera system in order to efficiently manage multiple 2D object detection modules in a real-time scenario. System performance has been evaluated under different load conditions such as number of cameras and image sizes. The results show that the software architecture scales well with the number of camera and can easily works with different image formats respecting the real time constraints. Moreover, the parallelization approach can be used in order to speed up the processing tasks with a low level of overhea
    corecore