9,061 research outputs found

    Accelerating exhaustive pairwise metagenomic comparisons

    Get PDF
    In this manuscript, we present an optimized and parallel version of our previous work IMSAME, an exhaustive gapped aligner for the pairwise and accurate comparison of metagenomes. Parallelization strategies are applied to take advantage of modern multiprocessor architectures. In addition, sequential optimizations in CPU time and memory consumption are provided. These algorithmic and computational enhancements enable IMSAME to calculate near optimal alignments which are used to directly assess similarity between metagenomes without requiring reference databases. We show that the overall efficiency of the parallel implementation is superior to 80% while retaining scalability as the number of parallel cores used increases. Moreover, we also show thats equential optimizations yield up to 8x speedup for scenarios with larger data.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tec

    Bayesian models and algorithms for protein beta-sheet prediction

    Get PDF
    Prediction of the three-dimensional structure greatly benefits from the information related to secondary structure, solvent accessibility, and non-local contacts that stabilize a protein's structure. Prediction of such components is vital to our understanding of the structure and function of a protein. In this paper, we address the problem of beta-sheet prediction. We introduce a Bayesian approach for proteins with six or less beta-strands, in which we model the conformational features in a probabilistic framework. To select the optimum architecture, we analyze the space of possible conformations by efficient heuristics. Furthermore, we employ an algorithm that finds the optimum pairwise alignment between beta-strands using dynamic programming. Allowing any number of gaps in an alignment enables us to model beta-bulges more effectively. Though our main focus is proteins with six or less beta-strands, we are also able to perform predictions for proteins with more than six beta-strands by combining the predictions of BetaPro with the gapped alignment algorithm. We evaluated the accuracy of our method and BetaPro. We performed a 10-fold cross validation experiment on the BetaSheet916 set and we obtained significant improvements in the prediction accuracy

    Bayesian models and algorithms for protein beta-sheet prediction

    Get PDF
    Prediction of the three-dimensional structure greatly benefits from the information related to secondary structure, solvent accessibility, and non-local contacts that stabilize a protein's structure. Prediction of such components is vital to our understanding of the structure and function of a protein. In this paper, we address the problem of beta-sheet prediction. We introduce a Bayesian approach for proteins with six or less beta-strands, in which we model the conformational features in a probabilistic framework. To select the optimum architecture, we analyze the space of possible conformations by efficient heuristics. Furthermore, we employ an algorithm that finds the optimum pairwise alignment between beta-strands using dynamic programming. Allowing any number of gaps in an alignment enables us to model beta-bulges more effectively. Though our main focus is proteins with six or less beta-strands, we are also able to perform predictions for proteins with more than six beta-strands by combining the predictions of BetaPro with the gapped alignment algorithm. We evaluated the accuracy of our method and BetaPro. We performed a 10-fold cross validation experiment on the BetaSheet916 set and we obtained significant improvements in the prediction accuracy

    Estimating seed sensitivity on homogeneous alignments

    Get PDF
    We address the problem of estimating the sensitivity of seed-based similarity search algorithms. In contrast to approaches based on Markov models [18, 6, 3, 4, 10], we study the estimation based on homogeneous alignments. We describe an algorithm for counting and random generation of those alignments and an algorithm for exact computation of the sensitivity for a broad class of seed strategies. We provide experimental results demonstrating a bias introduced by ignoring the homogeneousness condition

    Spaced seeds improve k-mer-based metagenomic classification

    Full text link
    Metagenomics is a powerful approach to study genetic content of environmental samples that has been strongly promoted by NGS technologies. To cope with massive data involved in modern metagenomic projects, recent tools [4, 39] rely on the analysis of k-mers shared between the read to be classified and sampled reference genomes. Within this general framework, we show in this work that spaced seeds provide a significant improvement of classification accuracy as opposed to traditional contiguous k-mers. We support this thesis through a series a different computational experiments, including simulations of large-scale metagenomic projects. Scripts and programs used in this study, as well as supplementary material, are available from http://github.com/gregorykucherov/spaced-seeds-for-metagenomics.Comment: 23 page

    Efficient seeding techniques for protein similarity search

    Get PDF
    We apply the concept of subset seeds proposed in [1] to similarity search in protein sequences. The main question studied is the design of efficient seed alphabets to construct seeds with optimal sensitivity/selectivity trade-offs. We propose several different design methods and use them to construct several alphabets.We then perform an analysis of seeds built over those alphabet and compare them with the standard Blastp seeding method [2,3], as well as with the family of vector seeds proposed in [4]. While the formalism of subset seed is less expressive (but less costly to implement) than the accumulative principle used in Blastp and vector seeds, our seeds show a similar or even better performance than Blastp on Bernoulli models of proteins compatible with the common BLOSUM62 matrix
    corecore