140 research outputs found

    Biometric recognition based on the texture along palmprint lines

    Get PDF
    Tese de Mestrado Integrado. Bioengenharia. Faculdade de Engenharia. Universidade do Porto. 201

    HUMAN FACE RECOGNITION BASED ON FRACTAL IMAGE CODING

    Get PDF
    Human face recognition is an important area in the field of biometrics. It has been an active area of research for several decades, but still remains a challenging problem because of the complexity of the human face. In this thesis we describe fully automatic solutions that can locate faces and then perform identification and verification. We present a solution for face localisation using eye locations. We derive an efficient representation for the decision hyperplane of linear and nonlinear Support Vector Machines (SVMs). For this we introduce the novel concept of ρ\rho and η\eta prototypes. The standard formulation for the decision hyperplane is reformulated and expressed in terms of the two prototypes. Different kernels are treated separately to achieve further classification efficiency and to facilitate its adaptation to operate with the fast Fourier transform to achieve fast eye detection. Using the eye locations, we extract and normalise the face for size and in-plane rotations. Our method produces a more efficient representation of the SVM decision hyperplane than the well-known reduced set methods. As a result, our eye detection subsystem is faster and more accurate. The use of fractals and fractal image coding for object recognition has been proposed and used by others. Fractal codes have been used as features for recognition, but we need to take into account the distance between codes, and to ensure the continuity of the parameters of the code. We use a method based on fractal image coding for recognition, which we call the Fractal Neighbour Distance (FND). The FND relies on the Euclidean metric and the uniqueness of the attractor of a fractal code. An advantage of using the FND over fractal codes as features is that we do not have to worry about the uniqueness of, and distance between, codes. We only require the uniqueness of the attractor, which is already an implied property of a properly generated fractal code. Similar methods to the FND have been proposed by others, but what distinguishes our work from the rest is that we investigate the FND in greater detail and use our findings to improve the recognition rate. Our investigations reveal that the FND has some inherent invariance to translation, scale, rotation and changes to illumination. These invariances are image dependent and are affected by fractal encoding parameters. The parameters that have the greatest effect on recognition accuracy are the contrast scaling factor, luminance shift factor and the type of range block partitioning. The contrast scaling factor affect the convergence and eventual convergence rate of a fractal decoding process. We propose a novel method of controlling the convergence rate by altering the contrast scaling factor in a controlled manner, which has not been possible before. This helped us improve the recognition rate because under certain conditions better results are achievable from using a slower rate of convergence. We also investigate the effects of varying the luminance shift factor, and examine three different types of range block partitioning schemes. They are Quad-tree, HV and uniform partitioning. We performed experiments using various face datasets, and the results show that our method indeed performs better than many accepted methods such as eigenfaces. The experiments also show that the FND based classifier increases the separation between classes. The standard FND is further improved by incorporating the use of localised weights. A local search algorithm is introduced to find a best matching local feature using this locally weighted FND. The scores from a set of these locally weighted FND operations are then combined to obtain a global score, which is used as a measure of the similarity between two face images. Each local FND operation possesses the distortion invariant properties described above. Combined with the search procedure, the method has the potential to be invariant to a larger class of non-linear distortions. We also present a set of locally weighted FNDs that concentrate around the upper part of the face encompassing the eyes and nose. This design was motivated by the fact that the region around the eyes has more information for discrimination. Better performance is achieved by using different sets of weights for identification and verification. For facial verification, performance is further improved by using normalised scores and client specific thresholding. In this case, our results are competitive with current state-of-the-art methods, and in some cases outperform all those to which they were compared. For facial identification, under some conditions the weighted FND performs better than the standard FND. However, the weighted FND still has its short comings when some datasets are used, where its performance is not much better than the standard FND. To alleviate this problem we introduce a voting scheme that operates with normalised versions of the weighted FND. Although there are no improvements at lower matching ranks using this method, there are significant improvements for larger matching ranks. Our methods offer advantages over some well-accepted approaches such as eigenfaces, neural networks and those that use statistical learning theory. Some of the advantages are: new faces can be enrolled without re-training involving the whole database; faces can be removed from the database without the need for re-training; there are inherent invariances to face distortions; it is relatively simple to implement; and it is not model-based so there are no model parameters that need to be tweaked

    Dental Biometrics: Human Identification Using Dental Radiograph

    Get PDF
    Biometric is the science and innovation of measuring and analyzing biological information.In information technology, biometric refers to advancements that measures and analyzes human body attributes,for example,DNA, eye retinas, fingerprints and irises,face pattern,voice patterns,and hand geometry estimations,for identification purposes.The primary motivation behind scientific dentistry is to distinguish expired people,for whom different method for recognizable proof(e.g.,unique finger impression,face,and so on.)are not accessible.Dental elements survives most of the PM events which may disrupt or change other body tissues,e.g. casualties of motor vehicles mishaps,fierce violations,and work place accident,whose bodies could be deformed to such a degree,that identification even by a family member is neither desirable nor reliable.Dental Biometric utilises dental radiographs to distinguish casualties.The radiographs procured after the casualty's demise are called post-mortem radiograph and the radiograph obtained when the casualty was alive is called ante-mortem radiograph.The objective of dental biometric is to match the unidentified individual's post-mortem radiograph against a database of labelled antemortem radiograph.This thesis proposes a novel method for the contour extraction from dental radiographs.The proposed algorithm of Active Contour Model or the Snake model is used for this purpose. A correctly detected contour is essential for proper feature extraction.This thesis only works on the contour detection.The method has been tested on some radiographs images and is found to produce desired output.However,the input radiograph image may be of low quality,may suffer a clear separation between two adjacent teeth.In that case the method will not be able to produce a satisfactory result.There is a need of pre-processing(e.g. contrast enhancement) before the active contour detection model can be applie

    Building a Strong Undergraduate Research Culture in African Universities

    Get PDF
    Africa had a late start in the race to setting up and obtaining universities with research quality fundamentals. According to Mamdani [5], the first colonial universities were few and far between: Makerere in East Africa, Ibadan and Legon in West Africa. This last place in the race, compared to other continents, has had tremendous implications in the development plans for the continent. For Africa, the race has been difficult from a late start to an insurmountable litany of problems that include difficulty in equipment acquisition, lack of capacity, limited research and development resources and lack of investments in local universities. In fact most of these universities are very recent with many less than 50 years in business except a few. To help reduce the labor costs incurred by the colonial masters of shipping Europeans to Africa to do mere clerical jobs, they started training ―workshops‖ calling them technical or business colleges. According to Mamdani, meeting colonial needs was to be achieved while avoiding the ―Indian disease‖ in Africa -- that is, the development of an educated middle class, a group most likely to carry the virus of nationalism. Upon independence, most of these ―workshops‖ were turned into national ―universities‖, but with no clear role in national development. These national ―universities‖ were catering for children of the new African political elites. Through the seventies and eighties, most African universities were still without development agendas and were still doing business as usual. Meanwhile, governments strapped with lack of money saw no need of putting more scarce resources into big white elephants. By mid-eighties, even the UN and IMF were calling for a limit on funding African universities. In today‘s African university, the traditional curiosity driven research model has been replaced by a market-driven model dominated by a consultancy culture according to Mamdani (Mamdani, Mail and Guardian Online). The prevailing research culture as intellectual life in universities has been reduced to bare-bones classroom activity, seminars and workshops have migrated to hotels and workshop attendance going with transport allowances and per diems (Mamdani, Mail and Guardian Online). There is need to remedy this situation and that is the focus of this paper

    Vision-based techniques for gait recognition

    Full text link
    Global security concerns have raised a proliferation of video surveillance devices. Intelligent surveillance systems seek to discover possible threats automatically and raise alerts. Being able to identify the surveyed object can help determine its threat level. The current generation of devices provide digital video data to be analysed for time varying features to assist in the identification process. Commonly, people queue up to access a facility and approach a video camera in full frontal view. In this environment, a variety of biometrics are available - for example, gait which includes temporal features like stride period. Gait can be measured unobtrusively at a distance. The video data will also include face features, which are short-range biometrics. In this way, one can combine biometrics naturally using one set of data. In this paper we survey current techniques of gait recognition and modelling with the environment in which the research was conducted. We also discuss in detail the issues arising from deriving gait data, such as perspective and occlusion effects, together with the associated computer vision challenges of reliable tracking of human movement. Then, after highlighting these issues and challenges related to gait processing, we proceed to discuss the frameworks combining gait with other biometrics. We then provide motivations for a novel paradigm in biometrics-based human recognition, i.e. the use of the fronto-normal view of gait as a far-range biometrics combined with biometrics operating at a near distance
    corecore