2,518 research outputs found

    Fixed-Parameter Algorithms for Computing Kemeny Scores - Theory and Practice

    Full text link
    The central problem in this work is to compute a ranking of a set of elements which is "closest to" a given set of input rankings of the elements. We define "closest to" in an established way as having the minimum sum of Kendall-Tau distances to each input ranking. Unfortunately, the resulting problem Kemeny consensus is NP-hard for instances with n input rankings, n being an even integer greater than three. Nevertheless this problem plays a central role in many rank aggregation problems. It was shown that one can compute the corresponding Kemeny consensus list in f(k) + poly(n) time, being f(k) a computable function in one of the parameters "score of the consensus", "maximum distance between two input rankings", "number of candidates" and "average pairwise Kendall-Tau distance" and poly(n) a polynomial in the input size. This work will demonstrate the practical usefulness of the corresponding algorithms by applying them to randomly generated and several real-world data. Thus, we show that these fixed-parameter algorithms are not only of theoretical interest. In a more theoretical part of this work we will develop an improved fixed-parameter algorithm for the parameter "score of the consensus" having a better upper bound for the running time than previous algorithms.Comment: Studienarbei

    Supertree construction by matrix representation with flip

    Get PDF

    Fixed-parameter algorithms for some combinatorial problems in bioinformatics

    Get PDF
    Fixed-parameterized algorithmics has been developed in 1990s as an approach to solve NP-hard problem optimally in a guaranteed running time. It offers a new opportunity to solve NP-hard problems exactly even on large problem instances. In this thesis, we apply fixed-parameter algorithms to cope with three NP-hard problems in bioinformatics: Flip Consensus Tree Problem is a combinatorial problem arising in computational phylogenetics. Using the formulation of the Flip Consensus Tree Problem as a graph-modification problem, we present a set of data reduction rules and two fixed-parameter algorithms with respect to the number of modifications. Additionally, we discuss several heuristic improvements to accelerate the running time of our algorithms in practice. We also report computational results on phylogenetic data. Weighted Cluster Editing Problem is a graph-modification problem, that arises in computational biology when clustering objects with respect to a given similarity or distance measure. We present one of our fixed-parameter algorithms with respect to the minimum modification cost and describe the idea of our fastest algorithm for this problem and its unweighted counterpart. Bond Order Assignment Problem asks for a bond order assignment of a molecule graph that minimizes a penalty function. We prove several complexity results on this problem and give two exact fixed-parameter algorithms for the problem. Our algorithms base on the dynamic programming approach on a tree decomposition of the molecule graph. Our algorithms are fixed-parameter with respect to the treewidth of the molecule graph and the maximum atom valence. We implemented one of our algorithms with several heuristic improvements and evaluate our algorithm on a set of real molecule graphs. It turns out that our algorithm is very fast on this dataset and even outperforms a heuristic algorithm that is usually used in practice

    A survey of parameterized algorithms and the complexity of edge modification

    Get PDF
    The survey is a comprehensive overview of the developing area of parameterized algorithms for graph modification problems. It describes state of the art in kernelization, subexponential algorithms, and parameterized complexity of graph modification. The main focus is on edge modification problems, where the task is to change some adjacencies in a graph to satisfy some required properties. To facilitate further research, we list many open problems in the area.publishedVersio

    A survey on algorithmic aspects of modular decomposition

    Full text link
    The modular decomposition is a technique that applies but is not restricted to graphs. The notion of module naturally appears in the proofs of many graph theoretical theorems. Computing the modular decomposition tree is an important preprocessing step to solve a large number of combinatorial optimization problems. Since the first polynomial time algorithm in the early 70's, the algorithmic of the modular decomposition has known an important development. This paper survey the ideas and techniques that arose from this line of research

    32nd International Symposium on Theoretical Aspects of Computer Science: STACS '15, March 4 - 7, 2015, Garching, Germany

    Get PDF
    • …
    corecore