652 research outputs found

    Speeding-up model-based fault injection of deep-submicron CMOS fault models through dynamic and partially reconfigurable FPGAS

    Full text link
    Actualmente, las tecnologías CMOS submicrónicas son básicas para el desarrollo de los modernos sistemas basados en computadores, cuyo uso simplifica enormemente nuestra vida diaria en una gran variedad de entornos, como el gobierno, comercio y banca electrónicos, y el transporte terrestre y aeroespacial. La continua reducción del tamaño de los transistores ha permitido reducir su consumo y aumentar su frecuencia de funcionamiento, obteniendo por ello un mayor rendimiento global. Sin embargo, estas mismas características que mejoran el rendimiento del sistema, afectan negativamente a su confiabilidad. El uso de transistores de tamaño reducido, bajo consumo y alta velocidad, está incrementando la diversidad de fallos que pueden afectar al sistema y su probabilidad de aparición. Por lo tanto, existe un gran interés en desarrollar nuevas y eficientes técnicas para evaluar la confiabilidad, en presencia de fallos, de sistemas fabricados mediante tecnologías submicrónicas. Este problema puede abordarse por medio de la introducción deliberada de fallos en el sistema, técnica conocida como inyección de fallos. En este contexto, la inyección basada en modelos resulta muy interesante, ya que permite evaluar la confiabilidad del sistema en las primeras etapas de su ciclo de desarrollo, reduciendo por tanto el coste asociado a la corrección de errores. Sin embargo, el tiempo de simulación de modelos grandes y complejos imposibilita su aplicación en un gran número de ocasiones. Esta tesis se centra en el uso de dispositivos lógicos programables de tipo FPGA (Field-Programmable Gate Arrays) para acelerar los experimentos de inyección de fallos basados en simulación por medio de su implementación en hardware reconfigurable. Para ello, se extiende la investigación existente en inyección de fallos basada en FPGA en dos direcciones distintas: i) se realiza un estudio de las tecnologías submicrónicas existentes para obtener un conjunto representativo de modelos de fallos transitoriosAndrés Martínez, DD. (2007). Speeding-up model-based fault injection of deep-submicron CMOS fault models through dynamic and partially reconfigurable FPGAS [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/1943Palanci

    FPGAs in Industrial Control Applications

    Get PDF
    The aim of this paper is to review the state-of-the-art of Field Programmable Gate Array (FPGA) technologies and their contribution to industrial control applications. Authors start by addressing various research fields which can exploit the advantages of FPGAs. The features of these devices are then presented, followed by their corresponding design tools. To illustrate the benefits of using FPGAs in the case of complex control applications, a sensorless motor controller has been treated. This controller is based on the Extended Kalman Filter. Its development has been made according to a dedicated design methodology, which is also discussed. The use of FPGAs to implement artificial intelligence-based industrial controllers is then briefly reviewed. The final section presents two short case studies of Neural Network control systems designs targeting FPGAs

    Next Generation Inverters Equipped with Virtual Synchronous Compensators for Grid Services and Grid Support

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Management and Protection of High-Voltage Direct Current Systems Based on Modular Multilevel Converters

    Get PDF
    The electrical grid is undergoing large changes due to the massive integration of renewable energy systems and the electrification of transport and heating sectors. These new resources are typically non-dispatchable and dependent on external factors (e.g., weather, user patterns). These two aspects make the generation and demand less predictable, facilitating a larger power variability. As a consequence, rejecting disturbances and respecting power quality constraints gets more challenging, as small power imbalances can create large frequency deviations with faster transients. In order to deal with these challenges, the energy system needs an upgraded infrastructure and improved control system. In this regard, high-voltage direct current (HVdc) systems can increase the controllability of the power system, facilitating the integration of large renewable energy systems. This thesis contributes to the advancement of the state of the art in HVdc systems, addressing the modeling, control and protection of HVdc systems, adopting modular multilevel converter (MMC) technology, with focus in providing services to ac systems. HVdc system control and protection studies need for an accurate HVdc terminal modeling in largely different time frames. Thus, as a first step, this thesis presents a guideline for the necessary level of deepness of the power electronics modeling with respect to the power system problem under study. Starting from a proper modeling for power system studies, this thesis proposes an HVdc frequency regulation approach, which adapts the power consumption of voltage-dependent loads by means of controlled reactive power injections, that control the voltage in the grid. This solution enables a fast and accurate load power control, able to minimize the frequency swing in asynchronous or embedded HVdc applications. One key challenge of HVdc systems is a proper protection system and particularly dc circuit breaker (CB) design, which necessitates fault current analysis for a large number of grid scenarios and parameters. This thesis applies the knowledge developed in the modeling and control of HVdc systems, to develop a fast and accurate fault current estimation method for MMC-based HVdc system. This method, including the HVdc control, achieved to accurately estimate the fault current peak value and slope with very small computational effort compared to the conventional approach using EMT-simulations. This work is concluded introducing a new protection methodology, that involves the fault blocking capability of MMCs with mixed submodule (SM) structure, without the need for an additional CB. The main focus is the adaption of the MMC topology with reduced number of bipolar SM to achieve similar fault clearing performance as with dc CB and tolerable SM over-voltage

    Self-Test Mechanisms for Automotive Multi-Processor System-on-Chips

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Virtually synchronous power plant control

    Get PDF
    During the last century, the electrical energy infrastructures have been governed by synchronous generators, producing electrical energy to the vast majority of the population worldwide. However, power systems are no longer what they used to be. During the last two decades of this new millennium the classical, centralized and hierarchical networks have experienced an intense integration of renewable energy sources, mainly wind and solar, thanks also to the evolution and development of power conversion and power electronics industry. Although the current electrical system was designed to have a core of generation power plants, responsible of producing the necessary energy to supply end users and a clear power flow, divided mainly into transmission and distribution networks, as well as scalable consumers connected at different levels, this scenario has dramatically changed with the addition of renewable generation units. The massive installation of wind and solar farms, connected at medium voltage networks, as well as the proliferation of small distributed generators interfaced by power converters in low voltage systems is changing the paradigm of energy generation, distribution and consumption. Despite the feasibility of this integration in the existing electrical network, the addition of these distributed generators made grid operators face new challenges, especially considering the stochastic profile of such energy producers. Furthermore, the replacement of traditional generation units for renewable energy sources has harmed the stability and the reliable response during grid contingencies. In order to cope with the difficult task of operating the electrical network, transmission system operators have increased the requirements and modified the grid codes for the newly integrated devices. In an effort to enable a more natural behavior of the renewable systems into the electrical grid, advanced control strategies were presented in the literature to emulate the behavior of traditional synchronous generators. These approaches focused mainly on the power converter relying on their local measurement points to resemble the operation of a traditional generating unit. However, the integration of those units into bigger systems, such as power plants, is still not clear as the effect of accumulating hundreds or thousands of units has not been properly addressed. In this regard, the work of this thesis deals with the study of the so-called virtual synchronous machine (VSM) in three control layers. Furthermore, an in-depth analysis of the general structure used for the different virtual synchronous machine approaches is presented, which constitutes the base implementation tree for all existent strategies of virtual synchronous generation. In a first stage, the most inner control loop is studied and analyzed regarding the current control on the power converter. This internal regulator is in charge of the current injection and the tracking of all external power reference. Afterward, the synchronous control is oriented to the device, where the generating unit relies on its local measurements to emulate a synchronous machine in the power converter. In this regard, a sensorless approach to the virtual synchronous machine is introduced, increasing the stability of the power converter and reducing the voltage measurements used. Finally, the model of the synchronous control is extrapolated into a power plant control layer to be able to regulate multiple units in a coordinated manner, thus emulating the behavior of a unique synchronous machine. In this regard, the local measurements are not used for the emulation of the virtual machine, but they are switched to PCC measurements, allowing to set the desired dynamic response at the power plant level.Postprint (published version

    Advanced flight control system study

    Get PDF
    The architecture, requirements, and system elements of an ultrareliable, advanced flight control system are described. The basic criteria are functional reliability of 10 to the minus 10 power/hour of flight and only 6 month scheduled maintenance. A distributed system architecture is described, including a multiplexed communication system, reliable bus controller, the use of skewed sensor arrays, and actuator interfaces. Test bed and flight evaluation program are proposed
    corecore