324 research outputs found

    Cryptographic Key Distribution In Wireless Sensor Networks Using Bilinear Pairings

    Get PDF
    It is envisaged that the use of cheap and tiny wireless sensors will soon bring a third wave of evolution in computing systems. Billions of wireless senor nodes will provide a bridge between information systems and the physical world. Wireless nodes deployed around the globe will monitor the surrounding environment as well as gather information about the people therein. It is clear that this revolution will put security solutions to a great test. Wireless Sensor Networks (WSNs) are a challenging environment for applying security services. They differ in many aspects from traditional fixed networks, and standard cryptographic solutions cannot be used in this application space. Despite many research efforts, key distribution in WSNs still remains an open problem. Many of the proposed schemes suffer from high communication overhead and storage costs, low scalability and poor resilience against different types of attacks. The exclusive usage of simple and energy efficient symmetric cryptography primitives does not solve the security problem. On the other hand a full public key infrastructure which uses asymmetric techniques, digital signatures and certificate authorities seems to be far too complex for a constrained WSN environment. This thesis investigates a new approach to WSN security which addresses many of the shortcomings of existing mechanisms. It presents a detailed description on how to provide practical Public Key Cryptography solutions for wireless sensor networks. The contributions to the state-of-the-art are added on all levels of development beginning with the basic arithmetic operations and finishing with complete security protocols. This work includes a survey of different key distribution protocols that have been developed for WSNs, with an evaluation of their limitations. It also proposes Identity- Based Cryptography (IBC) as an ideal technique for key distribution in sensor networks. It presents the first in-depth study of the application and implementation of Pairing- Based Cryptography (PBC) to WSNs. This is followed by a presentation of the state of the art on the software implementation of Elliptic Curve Cryptography (ECC) on typical WSNplatforms. New optimized algorithms for performing multiprecision multiplication on a broad range of low-end CPUs are introduced as well. Three novel protocols for key distribution are proposed in this thesis. Two of these are intended for non-interactive key exchange in flat and clustered networks respectively. A third key distribution protocol uses Identity-Based Encryption (IBE) to secure communication within a heterogeneous sensor network. This thesis includes also a comprehensive security evaluation that shows that proposed schemes are resistant to various attacks that are specific to WSNs. This work shows that by using the newest achievements in cryptography like pairings and IBC it is possible to deliver affordable public-key cryptographic solutions and to apply a sufficient level of security for the most demanding WSN applications

    Foundations, Properties, and Security Applications of Puzzles: A Survey

    Full text link
    Cryptographic algorithms have been used not only to create robust ciphertexts but also to generate cryptograms that, contrary to the classic goal of cryptography, are meant to be broken. These cryptograms, generally called puzzles, require the use of a certain amount of resources to be solved, hence introducing a cost that is often regarded as a time delay---though it could involve other metrics as well, such as bandwidth. These powerful features have made puzzles the core of many security protocols, acquiring increasing importance in the IT security landscape. The concept of a puzzle has subsequently been extended to other types of schemes that do not use cryptographic functions, such as CAPTCHAs, which are used to discriminate humans from machines. Overall, puzzles have experienced a renewed interest with the advent of Bitcoin, which uses a CPU-intensive puzzle as proof of work. In this paper, we provide a comprehensive study of the most important puzzle construction schemes available in the literature, categorizing them according to several attributes, such as resource type, verification type, and applications. We have redefined the term puzzle by collecting and integrating the scattered notions used in different works, to cover all the existing applications. Moreover, we provide an overview of the possible applications, identifying key requirements and different design approaches. Finally, we highlight the features and limitations of each approach, providing a useful guide for the future development of new puzzle schemes.Comment: This article has been accepted for publication in ACM Computing Survey

    Efficient software implementation of elliptic curves and bilinear pairings

    Get PDF
    Orientador: Júlio César Lopez HernándezTese (doutorado) - Universidade Estadual de Campinas, Instituto de ComputaçãoResumo: O advento da criptografia assimétrica ou de chave pública possibilitou a aplicação de criptografia em novos cenários, como assinaturas digitais e comércio eletrônico, tornando-a componente vital para o fornecimento de confidencialidade e autenticação em meios de comunicação. Dentre os métodos mais eficientes de criptografia assimétrica, a criptografia de curvas elípticas destaca-se pelos baixos requisitos de armazenamento para chaves e custo computacional para execução. A descoberta relativamente recente da criptografia baseada em emparelhamentos bilineares sobre curvas elípticas permitiu ainda sua flexibilização e a construção de sistemas criptográficos com propriedades inovadoras, como sistemas baseados em identidades e suas variantes. Porém, o custo computacional de criptossistemas baseados em emparelhamentos ainda permanece significativamente maior do que os assimétricos tradicionais, representando um obstáculo para sua adoção, especialmente em dispositivos com recursos limitados. As contribuições deste trabalho objetivam aprimorar o desempenho de criptossistemas baseados em curvas elípticas e emparelhamentos bilineares e consistem em: (i) implementação eficiente de corpos binários em arquiteturas embutidas de 8 bits (microcontroladores presentes em sensores sem fio); (ii) formulação eficiente de aritmética em corpos binários para conjuntos vetoriais de arquiteturas de 64 bits e famílias mais recentes de processadores desktop dotadas de suporte nativo à multiplicação em corpos binários; (iii) técnicas para implementação serial e paralela de curvas elípticas binárias e emparelhamentos bilineares simétricos e assimétricos definidos sobre corpos primos ou binários. Estas contribuições permitiram obter significativos ganhos de desempenho e, conseqüentemente, uma série de recordes de velocidade para o cálculo de diversos algoritmos criptográficos relevantes em arquiteturas modernas que vão de sistemas embarcados de 8 bits a processadores com 8 coresAbstract: The development of asymmetric or public key cryptography made possible new applications of cryptography such as digital signatures and electronic commerce. Cryptography is now a vital component for providing confidentiality and authentication in communication infra-structures. Elliptic Curve Cryptography is among the most efficient public-key methods because of its low storage and computational requirements. The relatively recent advent of Pairing-Based Cryptography allowed the further construction of flexible and innovative cryptographic solutions like Identity-Based Cryptography and variants. However, the computational cost of pairing-based cryptosystems remains significantly higher than traditional public key cryptosystems and thus an important obstacle for adoption, specially in resource-constrained devices. The main contributions of this work aim to improve the performance of curve-based cryptosystems, consisting of: (i) efficient implementation of binary fields in 8-bit microcontrollers embedded in sensor network nodes; (ii) efficient formulation of binary field arithmetic in terms of vector instructions present in 64-bit architectures, and on the recently-introduced native support for binary field multiplication in the latest Intel microarchitecture families; (iii) techniques for serial and parallel implementation of binary elliptic curves and symmetric and asymmetric pairings defined over prime and binary fields. These contributions produced important performance improvements and, consequently, several speed records for computing relevant cryptographic algorithms in modern computer architectures ranging from embedded 8-bit microcontrollers to 8-core processorsDoutoradoCiência da ComputaçãoDoutor em Ciência da Computaçã

    Efficient Implementations of Pairing-Based Cryptography on Embedded Systems

    Get PDF
    Many cryptographic applications use bilinear pairing such as identity based signature, instance identity-based key agreement, searchable public-key encryption, short signature scheme, certificate less encryption and blind signature. Elliptic curves over finite field are the most secure and efficient way to implement bilinear pairings for the these applications. Pairing based cryptosystems are being implemented on different platforms such as low-power and mobile devices. Recently, hardware capabilities of embedded devices have been emerging which can support efficient and faster implementations of pairings on hand-held devices. In this thesis, the main focus is optimization of Optimal Ate-pairing using special class of ordinary curves, Barreto-Naehring (BN), for different security levels on low-resource devices with ARM processors. Latest ARM architectures are using SIMD instructions based NEON engine and are helpful to optimize basic algorithms. Pairing implementations are being done using tower field which use field multiplication as the most important computation. This work presents NEON implementation of two multipliers (Karatsuba and Schoolbook) and compare the performance of these multipliers with different multipliers present in the literature for different field sizes. This work reports the fastest implementation timing of pairing for BN254, BN446 and BN638 curves for ARMv7 architecture which have security levels as 128-, 164-, and 192-bit, respectively. This work also presents comparison of code performance for ARMv8 architectures

    On Small Degree Extension Fields in Cryptology

    Get PDF
    This thesis studies the implications of using public key cryptographic primitives that are based in, or map to, the multiplicative group of finite fields with small extension degree. A central observation is that the multiplicative group of extension fields essentially decomposes as a product of algebraic tori, whose properties allow for improved communication efficiency. Part I of this thesis is concerned with the constructive implications of this idea. Firstly, algorithms are developed for the efficient implementation of torus-based cryptosystems and their performance compared with previous work. It is then shown how to apply these methods to operations required in low characteristic pairing-based cryptography. Finally, practical schemes for high-dimensional tori are discussed. Highly optimised implementations and benchmark timings are provided for each of these systems. Part II addresses the security of the schemes presented in Part I, i.e., the hardness of the discrete logarithm problem. Firstly, an heuristic analysis of the effectiveness of the Function Field Sieve in small characteristic is given. Next presented is an implementation of this algorithm for characteristic three fields used in pairing-based cryptography. Finally, a new index calculus algorithm for solving the discrete logarithm problem on algebraic tori is described and analysed

    Cryptographic Pairings: Efficiency and DLP security

    Get PDF
    This thesis studies two important aspects of the use of pairings in cryptography, efficient algorithms and security. Pairings are very useful tools in cryptography, originally used for the cryptanalysis of elliptic curve cryptography, they are now used in key exchange protocols, signature schemes and Identity-based cryptography. This thesis comprises of two parts: Security and Efficient Algorithms. In Part I: Security, the security of pairing-based protocols is considered, with a thorough examination of the Discrete Logarithm Problem (DLP) as it occurs in PBC. Results on the relationship between the two instances of the DLP will be presented along with a discussion about the appropriate selection of parameters to ensure particular security level. In Part II: Efficient Algorithms, some of the computational issues which arise when using pairings in cryptography are addressed. Pairings can be computationally expensive, so the Pairing-Based Cryptography (PBC) research community is constantly striving to find computational improvements for all aspects of protocols using pairings. The improvements given in this section contribute towards more efficient methods for the computation of pairings, and increase the efficiency of operations necessary in some pairing-based protocol

    Theory and Practice of Cryptography and Network Security Protocols and Technologies

    Get PDF
    In an age of explosive worldwide growth of electronic data storage and communications, effective protection of information has become a critical requirement. When used in coordination with other tools for ensuring information security, cryptography in all of its applications, including data confidentiality, data integrity, and user authentication, is a most powerful tool for protecting information. This book presents a collection of research work in the field of cryptography. It discusses some of the critical challenges that are being faced by the current computing world and also describes some mechanisms to defend against these challenges. It is a valuable source of knowledge for researchers, engineers, graduate and doctoral students working in the field of cryptography. It will also be useful for faculty members of graduate schools and universities

    Secure Session Framework: An Identity-based Cryptographic Key Agreement and Signature Protocol

    Get PDF
    Die vorliegende Dissertation beschäftigt sich mit der Methode der identitätsbasierten Verschlüsselung. Hierbei wird der Name oder die Identität eines Zielobjekts zum Verschlüsseln der Daten verwendet. Diese Eigenschaft macht diese Methode zu einem passenden Werkzeug für die moderne elektronische Kommunikation, da die dort verwendeten Identitäten oder Endpunktadressen weltweit eindeutig sein müssen. Das in der Arbeit entwickelte identitätsbasierte Schlüsseleinigungsprotokoll bietet Vorteile gegenüber existierenden Verfahren und eröffnet neue Möglichkeiten. Eines der Hauptmerkmale ist die komplette Unabhängigkeit der Schlüsselgeneratoren. Diese Unabhängigkeit ermöglicht es, dass verschiedene Sicherheitsdomänen ihr eigenes System aufsetzen können. Sie sind nicht mehr gezwungen, sich untereinander abzusprechen oder Geheimnisse auszutauschen. Auf Grund der Eigenschaften des Protokolls sind die Systeme trotzdem untereinander kompatibel. Dies bedeutet, dass Anwender einer Sicherheitsdomäne ohne weiteren Aufwand verschlüsselt mit Anwendern einer anderen Sicherheitsdomäne kommunizieren können. Die Unabhängigkeit wurde ebenfalls auf ein Signatur-Protokoll übertragen. Es ermöglicht, dass Benutzer verschiedener Sicherheitsdomänen ein Objekt signieren können, wobei auch der Vorgang des Signierens unabhängig sein kann. Neben dem Protokoll wurde in der Arbeit auch die Analyse von bestehenden Systemen durchgeführt. Es wurden Angriffe auf etablierte Protokolle und Vermutungen gefunden, die aufzeigen, ob oder in welchen Situationen diese nicht verwendet werden sollten. Dabei wurde zum einen eine komplett neue Herangehensweise gefunden, die auf der (Un-)Definiertheit von bestimmten Objekten in diskreten Räumen basiert. Zum anderen wurde die bekannte Analysemethode der Gitterreduktion benutzt und erfolgreich auf neue Bereiche übertragen. Schlussendlich werden in der Arbeit Anwendungsszenarien für das Protokoll vorgestellt, in denen dessen Vorteile besonders relevant sind. Das erste Szenario bezieht sich auf Telefonie, wobei die Telefonnummer einer Zielperson als Schlüssel verwendet. Sowohl GSM-Telefonie als auch VoIP-Telefonie werden in der Arbeit untersucht. Dafür wurden Implementierungen auf einem aktuellen Mobiltelefon durchgeführt und bestehende VoIP-Software erweitert. Das zweite Anwendungsbeispielsind IP-Netzwerke. Auch die Benutzung der IP-Adresse eines Rechners als Schlüssel ist ein gutes Beispiel, jedoch treten hier mehr Schwierigkeiten auf als bei der Telefonie. Es gibt beispielsweise dynamische IP-Adressen oder die Methode der textit{Network Address Translation}, bei der die IP-Adresse ersetzt wird. Diese und weitere Probleme wurden identifiziert und jeweils Lösungen erarbeitet
    corecore