38,108 research outputs found

    Event segmentation and biological motion perception in watching dance

    Get PDF
    We used a combination of behavioral, computational vision and fMRI methods to examine human brain activity while viewing a 386 s video of a solo Bharatanatyam dance. A computational analysis provided us with a Motion Index (MI) quantifying the silhouette motion of the dancer throughout the dance. A behavioral analysis using 30 naïve observers provided us with the time points where observers were most likely to report event boundaries where one movement segment ended and another began. These behavioral and computational data were used to interpret the brain activity of a different set of 11 naïve observers who viewed the dance video while brain activity was measured using fMRI. Results showed that the Motion Index related to brain activity in a single cluster in the right Inferior Temporal Gyrus (ITG) in the vicinity of the Extrastriate Body Area (EBA). Perception of event boundaries in the video was related to the BA44 region of right Inferior Frontal Gyrus as well as extensive clusters of bilateral activity in the Inferior Occipital Gyrus which extended in the right hemisphere towards the posterior Superior Temporal Sulcus (pSTS)

    PocketCare: Tracking the Flu with Mobile Phones using Partial Observations of Proximity and Symptoms

    Full text link
    Mobile phones provide a powerful sensing platform that researchers may adopt to understand proximity interactions among people and the diffusion, through these interactions, of diseases, behaviors, and opinions. However, it remains a challenge to track the proximity-based interactions of a whole community and then model the social diffusion of diseases and behaviors starting from the observations of a small fraction of the volunteer population. In this paper, we propose a novel approach that tries to connect together these sparse observations using a model of how individuals interact with each other and how social interactions happen in terms of a sequence of proximity interactions. We apply our approach to track the spreading of flu in the spatial-proximity network of a 3000-people university campus by mobilizing 300 volunteers from this population to monitor nearby mobile phones through Bluetooth scanning and to daily report flu symptoms about and around them. Our aim is to predict the likelihood for an individual to get flu based on how often her/his daily routine intersects with those of the volunteers. Thus, we use the daily routines of the volunteers to build a model of the volunteers as well as of the non-volunteers. Our results show that we can predict flu infection two weeks ahead of time with an average precision from 0.24 to 0.35 depending on the amount of information. This precision is six to nine times higher than with a random guess model. At the population level, we can predict infectious population in a two-week window with an r-squared value of 0.95 (a random-guess model obtains an r-squared value of 0.2). These results point to an innovative approach for tracking individuals who have interacted with people showing symptoms, allowing us to warn those in danger of infection and to inform health researchers about the progression of contact-induced diseases

    Aerospace Medicine and Biology: A continuing bibliography with indexes, supplement 192

    Get PDF
    This bibliography lists 247 reports, articles, and other documents introduced into the NASA scientific and technical information system in March 1979

    Throughput Analysis of Primary and Secondary Networks in a Shared IEEE 802.11 System

    Full text link
    In this paper, we analyze the coexistence of a primary and a secondary (cognitive) network when both networks use the IEEE 802.11 based distributed coordination function for medium access control. Specifically, we consider the problem of channel capture by a secondary network that uses spectrum sensing to determine the availability of the channel, and its impact on the primary throughput. We integrate the notion of transmission slots in Bianchi's Markov model with the physical time slots, to derive the transmission probability of the secondary network as a function of its scan duration. This is used to obtain analytical expressions for the throughput achievable by the primary and secondary networks. Our analysis considers both saturated and unsaturated networks. By performing a numerical search, the secondary network parameters are selected to maximize its throughput for a given level of protection of the primary network throughput. The theoretical expressions are validated using extensive simulations carried out in the Network Simulator 2. Our results provide critical insights into the performance and robustness of different schemes for medium access by the secondary network. In particular, we find that the channel captures by the secondary network does not significantly impact the primary throughput, and that simply increasing the secondary contention window size is only marginally inferior to silent-period based methods in terms of its throughput performance.Comment: To appear in IEEE Transactions on Wireless Communication

    A fine-grain time-sharing Time Warp system

    Get PDF
    Although Parallel Discrete Event Simulation (PDES) platforms relying on the Time Warp (optimistic) synchronization protocol already allow for exploiting parallelism, several techniques have been proposed to further favor performance. Among them we can mention optimized approaches for state restore, as well as techniques for load balancing or (dynamically) controlling the speculation degree, the latter being specifically targeted at reducing the incidence of causality errors leading to waste of computation. However, in state of the art Time Warp systems, events’ processing is not preemptable, which may prevent the possibility to promptly react to the injection of higher priority (say lower timestamp) events. Delaying the processing of these events may, in turn, give rise to higher incidence of incorrect speculation. In this article we present the design and realization of a fine-grain time-sharing Time Warp system, to be run on multi-core Linux machines, which makes systematic use of event preemption in order to dynamically reassign the CPU to higher priority events/tasks. Our proposal is based on a truly dual mode execution, application vs platform, which includes a timer-interrupt based support for bringing control back to platform mode for possible CPU reassignment according to very fine grain periods. The latter facility is offered by an ad-hoc timer-interrupt management module for Linux, which we release, together with the overall time-sharing support, within the open source ROOT-Sim platform. An experimental assessment based on the classical PHOLD benchmark and two real world models is presented, which shows how our proposal effectively leads to the reduction of the incidence of causality errors, as compared to traditional Time Warp, especially when running with higher degrees of parallelism

    Permanent indentation characterization for low-velocity impact modelling using three-point bending test

    Get PDF
    This paper deals with the origin of permanent indentation in composite laminates subjected to low-velocity impact. The three-point bending test is used to exhibit a non-closure of matrix crack which is assumed as a cause of permanent indentation. According to the observation at microscopic level, this non-closure of crack is produced by the blocking of debris inside matrix cracking and the formation of cusps where mixed-mode delamination occurs. A simple physicallybased law of permanent indentation, ‘‘pseudo-plasticity’’, is proposed. This law is qualitatively tested by three-point bending finite element model and is lastly applied in low-velocity impact finite element model in order to predict the permanent indentation. A comparison between low-velocity impact experiments and simulations is presented

    Plasma sprayed titanium coatings with/without a shroud

    Get PDF
    Abstract: Titanium coatings were deposited by plasma spraying with and without a shroud. The titanium coatings were then assessed by scanning electron microscopy. A comparison in microstructure between titanium coatings with and without the shroud was carried out. The results showed that the shroud played an important role in protecting the titanium particles from oxidation. The presence of the shroud led to a reduction in coating porosity. The reduction in air entrainment with t he shroud resulted in better heating of the particles, and an enhanced microstructure with lower porosity in the shrouded titanium coatings were observed compared to the air plasma sprayed counterpart
    corecore