124 research outputs found

    Sublinear-Time Distributed Algorithms for Detecting Small Cliques and Even Cycles

    Get PDF
    In this paper we give sublinear-time distributed algorithms in the CONGEST model for subgraph detection for two classes of graphs: cliques and even-length cycles. We show for the first time that all copies of 4-cliques and 5-cliques in the network graph can be listed in sublinear time, O(n^{5/6+o(1)}) rounds and O(n^{21/22+o(1)}) rounds, respectively. Prior to our work, it was not known whether it was possible to even check if the network contains a 4-clique or a 5-clique in sublinear time. For even-length cycles, C_{2k}, we give an improved sublinear-time algorithm, which exploits a new connection to extremal combinatorics. For example, for 6-cycles we improve the running time from O~(n^{5/6}) to O~(n^{3/4}) rounds. We also show two obstacles on proving lower bounds for C_{2k}-freeness: First, we use the new connection to extremal combinatorics to show that the current lower bound of Omega~(sqrt{n}) rounds for 6-cycle freeness cannot be improved using partition-based reductions from 2-party communication complexity, the technique by which all known lower bounds on subgraph detection have been proven to date. Second, we show that there is some fixed constant delta in (0,1/2) such that for any k, a Omega(n^{1/2+delta}) lower bound on C_{2k}-freeness implies new lower bounds in circuit complexity. For general subgraphs, it was shown in [Orr Fischer et al., 2018] that for any fixed k, there exists a subgraph H of size k such that H-freeness requires Omega~(n^{2-Theta(1/k)}) rounds. It was left as an open problem whether this is tight, or whether some constant-sized subgraph requires truly quadratic time to detect. We show that in fact, for any subgraph H of constant size k, the H-freeness problem can be solved in O(n^{2 - Theta(1/k)}) rounds, nearly matching the lower bound of [Orr Fischer et al., 2018]

    Quantum Distributed Algorithm for Triangle Finding in the CONGEST Model

    Get PDF

    Expander Decomposition in Dynamic Streams

    Get PDF
    In this paper we initiate the study of expander decompositions of a graph G = (V, E) in the streaming model of computation. The goal is to find a partitioning ? of vertices V such that the subgraphs of G induced by the clusters C ? ? are good expanders, while the number of intercluster edges is small. Expander decompositions are classically constructed by a recursively applying balanced sparse cuts to the input graph. In this paper we give the first implementation of such a recursive sparsest cut process using small space in the dynamic streaming model. Our main algorithmic tool is a new type of cut sparsifier that we refer to as a power cut sparsifier - it preserves cuts in any given vertex induced subgraph (or, any cluster in a fixed partition of V) to within a (?, ?)-multiplicative/additive error with high probability. The power cut sparsifier uses O?(n/??) space and edges, which we show is asymptotically tight up to polylogarithmic factors in n for constant ?

    Worst-Case to Expander-Case Reductions

    Get PDF
    In recent years, the expander decomposition method was used to develop many graph algorithms, resulting in major improvements to longstanding complexity barriers. This powerful hammer has led the community to (1) believe that most problems are as easy on worst-case graphs as they are on expanders, and (2) suspect that expander decompositions are the key to breaking the remaining longstanding barriers in fine-grained complexity. We set out to investigate the extent to which these two things are true (and for which problems). Towards this end, we put forth the concept of worst-case to expander-case self-reductions. We design a collection of such reductions for fundamental graph problems, verifying belief (1) for them. The list includes kk-Clique, 44-Cycle, Maximum Cardinality Matching, Vertex-Cover, and Minimum Dominating Set. Interestingly, for most (but not all) of these problems the proof is via a simple gadget reduction, not via expander decompositions, showing that this hammer is effectively useless against the problem and contradicting (2).Comment: ITCS 202

    Lower Bounds for Induced Cycle Detection in Distributed Computing

    Get PDF
    The distributed subgraph detection asks, for a fixed graph H, whether the n-node input graph contains H as a subgraph or not. In the standard CONGEST model of distributed computing, the complexity of clique/cycle detection and listing has received a lot of attention recently. In this paper we consider the induced variant of subgraph detection, where the goal is to decide whether the n-node input graph contains H as an induced subgraph or not. We first show a ??(n) lower bound for detecting the existence of an induced k-cycle for any k ? 4 in the CONGEST model. This lower bound is tight for k = 4, and shows that the induced variant of k-cycle detection is much harder than the non-induced version. This lower bound is proved via a reduction from two-party communication complexity. We complement this result by showing that for 5 ? k ? 7, this ??(n) lower bound cannot be improved via the two-party communication framework. We then show how to prove stronger lower bounds for larger values of k. More precisely, we show that detecting an induced k-cycle for any k ? 8 requires ??(n^{2-?{(1/k)}}) rounds in the CONGEST model, nearly matching the known upper bound O?(n^{2-?{(1/k)}}) of the general k-node subgraph detection (which also applies to the induced version) by Eden, Fiat, Fischer, Kuhn, and Oshman [DISC 2019]. Finally, we investigate the case where H is the diamond (the diamond is obtained by adding an edge to a 4-cycle, or equivalently removing an edge from a 4-clique), and show non-trivial upper and lower bounds on the complexity of the induced version of diamond detecting and listing
    • …
    corecore