27 research outputs found

    Downscaling landsat land surface temperature over the urban area of Florence

    Get PDF
    A new downscaling algorithm for land surface temperature (LST) images retrieved from Landsat Thematic Mapper (TM) was developed over the city of Florence and the results assessed against a high-resolution aerial image. The Landsat TM thermal band has a spatial resolution of 120 m, resampled at 30 m by the US Geological Survey (USGS) agency, whilst the airborne ground spatial resolution was 1 m. Substantial differences between Landsat USGS and airborne thermal data were observed on a 30 m grid: therefore a new statistical downscaling method at 30 m was developed. The overall root mean square error with respect to aircraft data improved from 3.3 °C (USGS) to 3.0 °C with the new method, that also showed better results with respect to other regressive downscaling techniques frequently used in literature. Such improvements can be ascribed to the selection of independent variables capable of representing the heterogeneous urban landscape

    Monitoring 10-m LST from the Combination MODIS/Sentinel-2, Validation in a High Contrast Semi-Arid Agroecosystem

    Get PDF
    Downscaling techniques offer a solution to the lack of high-resolution satellite Thermal InfraRed (TIR) data and can bridge the gap until operational TIR missions accomplishing spatio-temporal requirements are available. These techniques are generally based on the Visible Near InfraRed (VNIR)-TIR variable relations at a coarse spatial resolution, and the assumption that the relationship between spectral bands is independent of the spatial resolution. In this work, we adopted a previous downscaling method and introduced some adjustments to the original formulation to improve the model performance. Maps of Land Surface Temperature (LST) with 10-m spatial resolution were obtained as output from the combination of MODIS/Sentinel-2 images. An experiment was conducted in an agricultural area located in the Barrax test site, Spain (39°03′35″ N, 2°06′ W), for the summer of 2018. Ground measurements of LST transects collocated with the MODIS overpasses were used for a robust local validation of the downscaling approach. Data from 6 different dates were available, covering a variety of croplands and surface conditions, with LST values ranging 300-325 K. Differences within ±4.0 K were observed between measured and modeled temperatures, with an average estimation error of ±2.2 K and a systematic deviation of 0.2 K for the full ground dataset. A further cross-validation of the disaggregated 10-m LST products was conducted using an additional set of Landsat-7/ETM+ images. A similar uncertainty of ±2.0 K was obtained as an average. These results are encouraging for the adaptation of this methodology to the tandem Sentinel-3/Sentinel-2, and are promising since the 10-m pixel size, together with the 3-5 days revisit frequency of Sentinel-2 satellites can fulfill the LST input requirements of the surface energy balance methods for a variety of hydrological, climatological or agricultural applications. However, certain limitations to capture the variability of extreme LST, or in recently sprinkler irrigated fields, claim the necessity to explore the implementation of soil moisture or vegetation indices sensitive to soil water content as inputs in the downscaling approach. The ground LST dataset introduced in this paper will be of great value for further refinements and assessments

    Urban surface temperature time series estimation at the local scale by spatial-spectral unmixing of satellite observations

    Get PDF
    The study of urban climate requires frequent and accurate monitoring of land surface temperature (LST), at the local scale. Since currently, no space-borne sensor provides frequent thermal infrared imagery at high spatial resolution, the scientific community has focused on synergistic methods for retrieving LST that can be suitable for urban studies. Synergistic methods that combine the spatial structure of visible and near-infrared observations with the more frequent, but low-resolution surface temperature patterns derived by thermal infrared imagery provide excellent means for obtaining frequent LST estimates at the local scale in cities. In this study, a new approach based on spatial-spectral unmixing techniques was developed for improving the spatial resolution of thermal infrared observations and the subsequent LST estimation. The method was applied to an urban area in Crete, Greece, for the time period of one year. The results were evaluated against independent high-resolution LST datasets and found to be very promising, with RMSE less than 2 K in all cases. The developed approach has therefore a high potential to be operationally used in the near future, exploiting the Copernicus Sentinel (2 and 3) observations, to provide high spatio-temporal resolution LST estimates in cities

    機械学習を用いた空間ダウンスケールの気温予測法及び都市ヒートアイランドへの応用に関する研究

    Get PDF
    This study introduced a temperature spatial downscaling method based on machine learning algorithm to downscale air temperature from 1 km to 250 m for high-resolution atmosphere urban heat island (UHI) analysis. The core of this downscaling method is to establish the regression model between urban structure and temperature, and then we used the unchanged characteristics of regression models at different scale to predict high-resolution temperature data with high-resolution resolution urban structure, thereby analyzed atmosphere urban heat island. Finally, we compared the similarity and differentiation between atmosphere UHI and surface UHI. The results indicated the following: (1) The machine learning method was proved to be suitable for the air temperature spatial downscaling predication; (2) The UHI characteristics of metropolitan areas in different climatic regions of Japan are different; (3) There are great differences in intensity and spatial distribution between atmosphere UHI and surface UHI is great.北九州市立大

    Εκτίμηση της συμβολής της αστικής μορφολογίας και λειτουργίας στο αστικό θερμικό περιβάλλον με την ανάπτυξη προηγμένων τεχνικών δορυφορικής τηλεπισκόπησης

    Get PDF
    Στο πλαίσιο της παρούσας διδακτορικής διατριβής επιχειρήθηκε μία πολυδιάστατη μελέτη του θερμικού περιβάλλοντος του πολεοδομικού συγκροτήματος της Αθήνας. Η ερευνητική προσπάθεια είχε ως στόχο την εκτίμηση της επίδρασης της αστική μορφολογίας και λειτουργίας στο αστικό θερμικό περιβάλλον. Η μελέτη υλοποιήθηκε κατά κύριο λόγο με την ανάπτυξη τεχνικών δορυφορικής τηλεπισκόπησης και επικουρικά με την εφαρμογή Γεωγραφικών Συστημάτων Πληροφοριών και αριθμητικής προσομοίωσης. Τα υφιστάμενα δορυφορικά συστήματα δεν διαθέτουν την ταυτόχρονη υψηλή χωρική και χρονική διακριτική ικανότητα η οποία απαιτείται για τη λεπτομερειακή διερεύνηση των ενδοαστικών διαφοροποιήσεων. Για τον σκοπό αυτό, πραγματοποιήθηκε αρχικά βελτίωση των υφιστάμενων μεθοδολογιών της στατιστικής υποκλιμάκωσης, κατά την οποία το LST ενισχύεται χωρικά βάσει της σχέσης που εμφανίζει με επιφανειακές παραμέτρους. Η υποκλιμάκωση πραγματοποιήθηκε με τη χρήση πολλαπλών μεταβλητών πρόβλεψης, υψηλής χωρικής ανάλυσης τιμών του συντελεστή εκπομπής έπειτα από φασματική ταξινόμηση, και εξετάζοντας διαφορετικούς γραμμικούς και μη γραμμικούς αλγορίθμους παλινδρόμησης. Εφαρμόστηκε στις καταγραφές θερμικής ακτινοβολίας του αισθητήρα Moderate Resolution Imaging Spectroradiometer (MODIS) των δορυφόρων Aqua και Terra, για τη χωρική ενίσχυσή τους από το 1 km στα 100 m. Βρέθηκε ότι η προτεινόμενη μέθοδος υποκλιμάκωσης —με τη χρήση του αλγορίθμου παλινδρόμησης τύπου ridge— παρείχε αξιόπιστες, χωρικά ενισχυμένες τιμές LST με σφάλμα μικρότερο των 2 K (τετραγωνική ρίζα μέσου τετραγωνικού σφάλματος, Root Mean Square Error – RMSE) και με σταθερά καλύτερη ακρίβεια (∼0.5 K) συγκριτικά με τις μεθόδους αναφοράς. Στο επόμενο στάδιο της μελέτης πραγματοποιήθηκε, σε υψηλή χωρική διακριτική ικανότητα (100 m), ο προσδιορισμός των χαρακτηριστικών της αστικής μορφολογίας, της λειτουργίας και των ροών ενέργειας της Αθήνας, και επακόλουθα ο συνδυασμός τους σε έναν δείκτη θερμικής επιβάρυνσης. Χρησιμοποιώντας πλήθος γεωχωρικών δεδομένων, κατέστη δυνατή η πλήρης περιγραφή του κτηριακού περιβάλλοντος, συμπεριλαμβανομένου του λόγου του ύψους των κτηρίων προς το πλάτος των δρόμων —αναλογία διαστάσεων αστικής χαράδρας (H/W)— για κάθε οδό της πόλης. Επακόλουθα, αξιοποιώντας το υψηλής χωρικής και χρονικής ανάλυσης LST από το πρώτο τμήμα της εργασίας, πραγματοποιήθηκε ο προσδιορισμός της αισθητής (QH) και της λανθάνουσας ροής θερμότητας (QE). Χρησιμοποιήθηκαν επιπρόσθετα παρατηρήσεις από μετεωρολογικούς σταθμούς και εφαρμόστηκε η μέθοδος της «αεροδυναμικής αντίστασης». Για την αξιολόγηση της ακρίβειας της εκτίμησης των ροών χρησιμοποιήθηκαν μετρήσεις μικρομετεωρολογικού πύργου· βρέθηκε μέσο σφάλμα RMSE ∼45 W/m2 για το QH και ∼15 W/m2 για το QE. Από τις παραπάνω τυρβώδεις ροές ενέργειας υπολογίστηκε στη συνέχεια ο λόγος Bowen β = QH/QE. Η ανθρωπογενής ροή θερμότητας (QF) προσδιορίστηκε μέσω της ανάπτυξης αλγορίθμου που συνδυάζει τις «bottom-up» και «top-down» προσεγγίσεις και είναι προσαρμοσμένος στα διαθέσιμα ενεργειακά δεδομένα της Αθήνας. Εντοπίστηκαν υψηλές ανθρωπογενείς εκπομπές θερμότητας για το κέντρο της πόλης (QF > 100 W/m2). Οι παραπάνω μεταβλητές (H/W, β και QF) μαζί με την εκτιμώμενη «καθαρή» μεταβολή του ρυθμού αποθήκευσης θερμότητας (ΔQs) ενσωματώθηκαν κατόπιν στον προτεινόμενο δείκτη θερμικής έκθεσης (Urban Heat Exposure, UHeatEx), χρησιμοποιώντας τη μέθοδο της ανάλυσης σε κύριες συνιστώσες (Principal Component Analysis, PCA). Ο παραπάνω δείκτης αποτύπωσε τα σημεία του αστικού ιστού της Αθήνας με τη δυσμενέστερη θερμική ποιότητα και κατά συνέπεια μπορεί να καταστεί ιδιαίτερα πολύτιμος σε μελέτες αστικού σχεδιασμού. Επιπρόσθετα, ο UHeatEx κατάφερε να αναδείξει τα ιδιαίτερα χαρακτηριστικά ως προς τη μορφολογία και το ενεργειακό ισοζύγιο της πόλης, κάτι που σε σημαντικό βαθμό δεν μπορούσε να επιτευχθεί μέσω της ταξινόμησης των «Τοπικών Κλιματικών Ζωνών» (Local Climate Zones, LCZ). Στο τελευταίο μέρος το ενδιαφέρον μετατοπίστηκε στην αξιολόγηση της μέσης επίδρασης στο θερμικό περιβάλλον εκτενέστερων αστικών ενοτήτων τοπικής κλίμακας (1 km). Συγκεκριμένα, αρχικά διερευνήθηκε η επίδραση βασικών αστικών μορφολογικών παραμέτρων —το ποσοστό των αδιαπέρατων επιφανειών, το ποσοστό της επιφάνειας κάλυψης από κτήρια και το ύψος των κτηρίων— στην επιφανειακή θερμοκρασία όπως αυτή καταγράφεται από τον δορυφορικό αισθητήρα MODIS. Με σκοπό μια ευρύτερη γενίκευση των συμπερασμάτων ως προς την επίδραση της αστικής μορφολογίας στο LST, παράλληλα με την περίπτωση της Αθήνας εξετάστηκαν 24 επιπλέον ευρωπαϊκές πόλεις. Η στατιστική ανάλυση κατέδειξε ότι η πυκνή και υψηλή δόμηση έχει εν γένει ασθενή θετική ή ακόμα και αρνητική σύνδεση με το LST κατά τη διάρκεια της ημέρας, ενώ αντίθετα εμφανίζει ισχυρή θετική επίδραση τη νύχτα. Το παραπάνω ήταν ιδιαίτερα εμφανές για την Αθήνα, όπου και εξετάστηκαν επιπλέον μορφολογικές παράμετροι και πραγματοποιήθηκε ερμηνεία των αποτελεσμάτων με βάση τις τάξεις των LCZ. Στη συνέχεια, τα χαρακτηριστικά της αστικής μορφολογίας και λειτουργίας της Αθήνας ενσωματώθηκαν στο ατμοσφαιρικό μοντέλο WRF για τη διερεύνηση της προγνωστικής ικανότητάς του, όσον αφορά το αστικό θερμικό περιβάλλον. Τα αποτελέσματα της εφαρμογής του WRF (σε πλέγμα χωρικής ανάλυσης 1 km) σε συνδυασμό με ένα τροποποιημένο σχήμα αστικής παραμετροποίησης έδειξαν ότι το μοντέλο μπορεί να αναπαραγάγει τις κύριες διαφοροποιήσεις εντός του αστικού ιστού, αναφορικά με την επιφανειακή θερμοκρασία (RMSE ∼2.4 K) και τη θερμοκρασία αέρα κοντά στο έδαφος (RMSE ∼1.7 K).In this PhD thesis, a multifaceted study of the thermal environment of Athens was conducted. The motivation of the research work was to assess the influence of urban form and function on the urban thermal environment. The work was carried out primarily by applying and developing satellite remote sensing techniques, and to a lesser extent via Geographical Information Systems (GIS) methodologies and the implementation of numerical simulations. The current satellite systems do not have the synchronous spatial and temporal frequency which is needed in a detailed study of intra-urban variability. To this end, an improvement of the standard statistical downscaling methodologies was firstly developed, where LST is disaggregated based on its relationship with surface parameters. The downscaling was accomplished using multiple predictor variables, high resolution land cover-based emissivity values, and assessing various linear and non-linear regression algorithms. It was applied to sharpen the thermal observations of the Moderate Resolution Imaging Spectroradiometer (MODIS) from 1 km to 100 m. It was found that the suggested downscaling method —using the ridge regression downscaling algorithm— produced a robust, spatially sharpened LST, with an average Root Mean Square Error (RMSE) less than 2 K and a consistent better performance compared to the reference methods. At the next stage, the urban form, function, and energy fluxes were mapped at a high resolution (100 m) and subsequently combined in an urban heat exposure indicator. Utilizing a wide range of spatial data, a full description of the building environment was accomplished, as well as the derivation of the building height to road width ratio —urban canyon aspect ratio (H/W)— at street level. Next, using the downscaled satellite-derived LST from the first part of the study and meteorological observations, the sensible (QH) and latent heat flux (QE) were calculated, applying the “aerodynamic resistance” methodology. To assess the accuracy of the calculations, micrometeorological observations; an overall RMSE error of ∼45 Wm2 for QH and ∼15 Wm2 for QE was obtained. From the above turbulent fluxes, the Bowen ratio β = QH/QE was subsequently derived. To determine the anthropogenic heat flux (QF) a new algorithm was developed, combining the “bottom-up” and “top-down” methodologies, adapted to the available data for the study area. Particularly high anthropogenic heat emissions were found for the city center (QF > 100 W/m2). Subsequently, the above urban parameters (H/W, β και QF) together with the net heat storage (ΔQs) were integrated into the proposed Urban Heat Exposure (UHeatEx) indicator through Principal Component Analysis (PCA). The indicator outlined the diverging thermal quality of the different building blocks in Athens and thereby can be valuable to urban planning adaptation responses. Moreover, UHeatEx managed to highlight the city-specific features of the urban form and energy budget of the city, which to a great extent could not be captured by the classification of the Local Climate Zones (LCZ). At the final stage of the study, focus was shifted to the study of the integrated neighborhood-scale effect (1 km) on the urban thermal climate. Specifically, it was initially assessed how basic urban morphological parameters —the impervious fraction, the building fraction, and the building height— are interlinked to the surface temperature variations, as captured by a spaceborne sensor (MODIS). To promote the generalization of conclusions, in addition to Athens, 24 additional European cities were examined. The statistical analysis showed that the closely spaced and high-rise buildings have generally a weak positive or even a negative relation to LST in daytime and a strong positive effect at night. This finding was significantly pronounced for Athens, where further urban parameters were also evaluated and the results were linked to the LCZs classes. Next, urban form and function of Athens were incorporated in the WRF model to study its predicting ability of the thermal environment. Using WRF along with a modified urban parameterization scheme (at a 1 km grid), results indicated that the prevailing intra-urban spatial patterns can be reproduced in the simulations, regarding the surface temperature (RMSE ∼2.4 K) and the near-surface air temperature (RMSE ∼1.7 K)

    Enjeux de la réduction d'échelle dans l'estimation par télédétection des déterminants climatiques

    Get PDF
    Ce travail s'inscrit dans le cadre de recherche sur les maladies vectorielles de Lyme et Virus du Nil au sein de l'Agence de Santé Publique du Canada (ASPC) ayant pour finalité d'évaluer et de cartographier les risques sanitaires associés à ces maladies infectieuses liées au climat aux échelles municipales, provinciales et fédérale. Dans ce contexte, cette recherche vise à démontrer la faisabilité, la pertinence et les enjeux de recourir aux méthodes de réduction d'échelle pour obtenir à une haute résolution spatio-temporelle (100/30 m et 1 jour) avec au plus des marges d'erreur de 2 unités, des déterminants climatiques et microclimatiques (DCMC) en milieu hétérogène du Canada. Un cadre méthodologique d'application des méthodes de réduction d'échelle, Random Forest Regression (RFR), Thermal sharpening (TsHARP), Pixel block intensity modulation (PBIM), a été proposé pour estimer la température de surface (LST) de MODIS 1000 m à 100/30 m. Des expérimentations basées sur cette approche ont été effectuées sur trois sites au Québec à différentes époques. Les résultats, spatialement représentatifs, ont été validés avec les températures de l'air et celles prises par de Landsat 08 avec des marges d'erreur autour de 2°C. L'analyse des résultats démontre la capacité effective des méthodes de réduction d'échelle à discriminer la LST dans l'espace. Toutefois, dans le contexte du projet de l'ASPC, ces résultats sont non concluants à 100/30 m en l'absence d'une plus-value significative au plan spatial de LST. Cette analyse a conduit à discuter des enjeux temporels, spatiaux, méthodologiques et de gestion de gros volumes de données en lien avec la réduction d'échelle dans le contexte du projet.This research is part of the Public Health Agency of Canada's (PHAC) research on Lyme and West Nile Virus vector-borne diseases, which aims to assess and map the health risks associated with these climate-related infectious diseases at the municipal, provincial and federal levels. In this context, this research aims to demonstrate the feasibility, relevance and challenges of using downscaling methods to obtain high spatial and temporal resolution (100/30 m and 1 day), with margins of error of no more than 2 units, of climatic and microclimatic determinants (CMDs) in a heterogeneous Canadian environment. A methodological framework for the application of downscaling methods, Random Forest Regression (RFR), Thermal sharpening (TsHARP), Pixel block intensity modulation (PBIM), has been proposed to estimate the surface temperature (LST) from MODIS 1000 m to 100/30 m. Experiments with our approach were carried out at three sites in Quebec at different times. The spatially representative results were validated with air and Landsat 08 temperatures with error margins around 2°C. The analysis of our results demonstrates the effective capacity of downscaling methods to discriminate LST in space. However, in the context of the ASPC project, these results are inconclusive at 100/30 m in the absence of a significant, expected increase in the spatial accuracy of LST. This analysis led to a discussion of the temporal, spatial, methodological and large data volume management issues related to downscaling in the context of the project

    Remote Sensing Monitoring of Land Surface Temperature (LST)

    Get PDF
    This book is a collection of recent developments, methodologies, calibration and validation techniques, and applications of thermal remote sensing data and derived products from UAV-based, aerial, and satellite remote sensing. A set of 15 papers written by a total of 70 authors was selected for this book. The published papers cover a wide range of topics, which can be classified in five groups: algorithms, calibration and validation techniques, improvements in long-term consistency in satellite LST, downscaling of LST, and LST applications and land surface emissivity research

    Downscaling Landsat-8 land surface temperature maps in diverse urban landscapes using multivariate adaptive regression splines and very high resolution auxiliary data

    Get PDF
    We propose a method for spatial downscaling of Landsat 8-derived LST maps from 100(30 m) resolution down to 2–4 m with the use of the Multiple Adaptive Regression Splines (MARS) models coupled with very high resolution auxiliary data derived from hyperspectral aerial imagery and large-scale topographic maps. We applied the method to four Landsat 8 scenes, two collected in summer and two in winter, for three British towns collectively representing a variety of urban form. We used several spectral indices as well as fractional coverage of water and paved surfaces as LST predictors, and applied a novel method for the correction of temporal mismatch between spectral indices derived from aerial and satellite imagery captured at different dates, allowing for the application of the downscaling method for multiple dates without the need for repeating the aerial survey. Our results suggest that the method performed well for the summer dates, achieving RMSE of 1.40–1.83 K prior to and 0.76–1.21 K after correction for residuals. We conclude that the MARS models, by addressing the non-linear relationship of LST at coarse and fine spatial resolutions, can be successfully applied to produce high resolution LST maps suitable for studies of urban thermal environment at local scales
    corecore