581 research outputs found

    Authentication enhancement in command and control networks: (a study in Vehicular Ad-Hoc Networks)

    Get PDF
    Intelligent transportation systems contribute to improved traffic safety by facilitating real time communication between vehicles. By using wireless channels for communication, vehicular networks are susceptible to a wide range of attacks, such as impersonation, modification, and replay. In this context, securing data exchange between intercommunicating terminals, e.g., vehicle-to-everything (V2X) communication, constitutes a technological challenge that needs to be addressed. Hence, message authentication is crucial to safeguard vehicular ad-hoc networks (VANETs) from malicious attacks. The current state-of-the-art for authentication in VANETs relies on conventional cryptographic primitives, introducing significant computation and communication overheads. In this challenging scenario, physical (PHY)-layer authentication has gained popularity, which involves leveraging the inherent characteristics of wireless channels and the hardware imperfections to discriminate between wireless devices. However, PHY-layerbased authentication cannot be an alternative to crypto-based methods as the initial legitimacy detection must be conducted using cryptographic methods to extract the communicating terminal secret features. Nevertheless, it can be a promising complementary solution for the reauthentication problem in VANETs, introducing what is known as “cross-layer authentication.” This thesis focuses on designing efficient cross-layer authentication schemes for VANETs, reducing the communication and computation overheads associated with transmitting and verifying a crypto-based signature for each transmission. The following provides an overview of the proposed methodologies employed in various contributions presented in this thesis. 1. The first cross-layer authentication scheme: A four-step process represents this approach: initial crypto-based authentication, shared key extraction, re-authentication via a PHY challenge-response algorithm, and adaptive adjustments based on channel conditions. Simulation results validate its efficacy, especially in low signal-to-noise ratio (SNR) scenarios while proving its resilience against active and passive attacks. 2. The second cross-layer authentication scheme: Leveraging the spatially and temporally correlated wireless channel features, this scheme extracts high entropy shared keys that can be used to create dynamic PHY-layer signatures for authentication. A 3-Dimensional (3D) scattering Doppler emulator is designed to investigate the scheme’s performance at different speeds of a moving vehicle and SNRs. Theoretical and hardware implementation analyses prove the scheme’s capability to support high detection probability for an acceptable false alarm value ≤ 0.1 at SNR ≥ 0 dB and speed ≤ 45 m/s. 3. The third proposal: Reconfigurable intelligent surfaces (RIS) integration for improved authentication: Focusing on enhancing PHY-layer re-authentication, this proposal explores integrating RIS technology to improve SNR directed at designated vehicles. Theoretical analysis and practical implementation of the proposed scheme are conducted using a 1-bit RIS, consisting of 64 × 64 reflective units. Experimental results show a significant improvement in the Pd, increasing from 0.82 to 0.96 at SNR = − 6 dB for multicarrier communications. 4. The fourth proposal: RIS-enhanced vehicular communication security: Tailored for challenging SNR in non-line-of-sight (NLoS) scenarios, this proposal optimises key extraction and defends against denial-of-service (DoS) attacks through selective signal strengthening. Hardware implementation studies prove its effectiveness, showcasing improved key extraction performance and resilience against potential threats. 5. The fifth cross-layer authentication scheme: Integrating PKI-based initial legitimacy detection and blockchain-based reconciliation techniques, this scheme ensures secure data exchange. Rigorous security analyses and performance evaluations using network simulators and computation metrics showcase its effectiveness, ensuring its resistance against common attacks and time efficiency in message verification. 6. The final proposal: Group key distribution: Employing smart contract-based blockchain technology alongside PKI-based authentication, this proposal distributes group session keys securely. Its lightweight symmetric key cryptography-based method maintains privacy in VANETs, validated via Ethereum’s main network (MainNet) and comprehensive computation and communication evaluations. The analysis shows that the proposed methods yield a noteworthy reduction, approximately ranging from 70% to 99%, in both computation and communication overheads, as compared to the conventional approaches. This reduction pertains to the verification and transmission of 1000 messages in total

    LIPIcs, Volume 251, ITCS 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 251, ITCS 2023, Complete Volum

    Envisioning the Future of Cyber Security in Post-Quantum Era: A Survey on PQ Standardization, Applications, Challenges and Opportunities

    Full text link
    The rise of quantum computers exposes vulnerabilities in current public key cryptographic protocols, necessitating the development of secure post-quantum (PQ) schemes. Hence, we conduct a comprehensive study on various PQ approaches, covering the constructional design, structural vulnerabilities, and offer security assessments, implementation evaluations, and a particular focus on side-channel attacks. We analyze global standardization processes, evaluate their metrics in relation to real-world applications, and primarily focus on standardized PQ schemes, selected additional signature competition candidates, and PQ-secure cutting-edge schemes beyond standardization. Finally, we present visions and potential future directions for a seamless transition to the PQ era

    SAFE-NET: Secure and Fast Encryption using Network of Pseudo-Random Number Generators

    Get PDF
    We propose a general framework to design a general class of random number generators suit- able for both computer simulation and computer security applications. It can include newly pro- posed generators SAFE (Secure And Fast Encryption) and ChaCha, a variant of Salsa, one of the four finalists of the eSTREAM ciphers. Two requirements for ciphers to be considered se- cure is that they must be unpredictable with a nice distributional property. Proposed SAFE-NET is a network of n nodes with external pseudo-random number generators as inputs nodes, several inner layers of nodes with a sequence of random variates through ARX (Addition, Rotation, XOR) transformations to diffuse the components of the initial state vector. After several rounds of transformations (with complex inner connections) are done, the output layer with n nodes are outputted via additional transformations. By utilizing random number generators with desirable empirical properties, SAFE-NET injects randomness into the keystream generation process and constantly updates the cipher’s state with external pseudo-random numbers during each iteration. Through the integration of shuffle tables and advanced output functions, extra layers of security are provided, making it harder for attackers to exploit weaknesses in the cipher. Empirical results demonstrate that SAFE-NET requires fewer operations than ChaCha while still producing a sequence of uniformly distributed random numbers

    Towards trustworthy computing on untrustworthy hardware

    Get PDF
    Historically, hardware was thought to be inherently secure and trusted due to its obscurity and the isolated nature of its design and manufacturing. In the last two decades, however, hardware trust and security have emerged as pressing issues. Modern day hardware is surrounded by threats manifested mainly in undesired modifications by untrusted parties in its supply chain, unauthorized and pirated selling, injected faults, and system and microarchitectural level attacks. These threats, if realized, are expected to push hardware to abnormal and unexpected behaviour causing real-life damage and significantly undermining our trust in the electronic and computing systems we use in our daily lives and in safety critical applications. A large number of detective and preventive countermeasures have been proposed in literature. It is a fact, however, that our knowledge of potential consequences to real-life threats to hardware trust is lacking given the limited number of real-life reports and the plethora of ways in which hardware trust could be undermined. With this in mind, run-time monitoring of hardware combined with active mitigation of attacks, referred to as trustworthy computing on untrustworthy hardware, is proposed as the last line of defence. This last line of defence allows us to face the issue of live hardware mistrust rather than turning a blind eye to it or being helpless once it occurs. This thesis proposes three different frameworks towards trustworthy computing on untrustworthy hardware. The presented frameworks are adaptable to different applications, independent of the design of the monitored elements, based on autonomous security elements, and are computationally lightweight. The first framework is concerned with explicit violations and breaches of trust at run-time, with an untrustworthy on-chip communication interconnect presented as a potential offender. The framework is based on the guiding principles of component guarding, data tagging, and event verification. The second framework targets hardware elements with inherently variable and unpredictable operational latency and proposes a machine-learning based characterization of these latencies to infer undesired latency extensions or denial of service attacks. The framework is implemented on a DDR3 DRAM after showing its vulnerability to obscured latency extension attacks. The third framework studies the possibility of the deployment of untrustworthy hardware elements in the analog front end, and the consequent integrity issues that might arise at the analog-digital boundary of system on chips. The framework uses machine learning methods and the unique temporal and arithmetic features of signals at this boundary to monitor their integrity and assess their trust level

    Efficient Security Protocols for Constrained Devices

    Get PDF
    During the last decades, more and more devices have been connected to the Internet.Today, there are more devices connected to the Internet than humans.An increasingly more common type of devices are cyber-physical devices.A device that interacts with its environment is called a cyber-physical device.Sensors that measure their environment and actuators that alter the physical environment are both cyber-physical devices.Devices connected to the Internet risk being compromised by threat actors such as hackers.Cyber-physical devices have become a preferred target for threat actors since the consequence of an intrusion disrupting or destroying a cyber-physical system can be severe.Cyber attacks against power and energy infrastructure have caused significant disruptions in recent years.Many cyber-physical devices are categorized as constrained devices.A constrained device is characterized by one or more of the following limitations: limited memory, a less powerful CPU, or a limited communication interface.Many constrained devices are also powered by a battery or energy harvesting, which limits the available energy budget.Devices must be efficient to make the most of the limited resources.Mitigating cyber attacks is a complex task, requiring technical and organizational measures.Constrained cyber-physical devices require efficient security mechanisms to avoid overloading the systems limited resources.In this thesis, we present research on efficient security protocols for constrained cyber-physical devices.We have implemented and evaluated two state-of-the-art protocols, OSCORE and Group OSCORE.These protocols allow end-to-end protection of CoAP messages in the presence of untrusted proxies.Next, we have performed a formal protocol verification of WirelessHART, a protocol for communications in an industrial control systems setting.In our work, we present a novel attack against the protocol.We have developed a novel architecture for industrial control systems utilizing the Digital Twin concept.Using a state synchronization protocol, we propagate state changes between the digital and physical twins.The Digital Twin can then monitor and manage devices.We have also designed a protocol for secure ownership transfer of constrained wireless devices. Our protocol allows the owner of a wireless sensor network to transfer control of the devices to a new owner.With a formal protocol verification, we can guarantee the security of both the old and new owners.Lastly, we have developed an efficient Private Stream Aggregation (PSA) protocol.PSA allows devices to send encrypted measurements to an aggregator.The aggregator can combine the encrypted measurements and calculate the decrypted sum of the measurements.No party will learn the measurement except the device that generated it

    Towards Automated Detection of Single-Trace Side-Channel Vulnerabilities in Constant-Time Cryptographic Code

    Full text link
    Although cryptographic algorithms may be mathematically secure, it is often possible to leak secret information from the implementation of the algorithms. Timing and power side-channel vulnerabilities are some of the most widely considered threats to cryptographic algorithm implementations. Timing vulnerabilities may be easier to detect and exploit, and all high-quality cryptographic code today should be written in constant-time style. However, this does not prevent power side-channels from existing. With constant time code, potential attackers can resort to power side-channel attacks to try leaking secrets. Detecting potential power side-channel vulnerabilities is a tedious task, as it requires analyzing code at the assembly level and needs reasoning about which instructions could be leaking information based on their operands and their values. To help make the process of detecting potential power side-channel vulnerabilities easier for cryptographers, this work presents Pascal: Power Analysis Side Channel Attack Locator, a tool that introduces novel symbolic register analysis techniques for binary analysis of constant-time cryptographic algorithms, and verifies locations of potential power side-channel vulnerabilities with high precision. Pascal is evaluated on a number of implementations of post-quantum cryptographic algorithms, and it is able to find dozens of previously reported single-trace power side-channel vulnerabilities in these algorithms, all in an automated manner

    Security and Privacy for Modern Wireless Communication Systems

    Get PDF
    The aim of this reprint focuses on the latest protocol research, software/hardware development and implementation, and system architecture design in addressing emerging security and privacy issues for modern wireless communication networks. Relevant topics include, but are not limited to, the following: deep-learning-based security and privacy design; covert communications; information-theoretical foundations for advanced security and privacy techniques; lightweight cryptography for power constrained networks; physical layer key generation; prototypes and testbeds for security and privacy solutions; encryption and decryption algorithm for low-latency constrained networks; security protocols for modern wireless communication networks; network intrusion detection; physical layer design with security consideration; anonymity in data transmission; vulnerabilities in security and privacy in modern wireless communication networks; challenges of security and privacy in node–edge–cloud computation; security and privacy design for low-power wide-area IoT networks; security and privacy design for vehicle networks; security and privacy design for underwater communications networks

    Efficient Security Algorithm for Provisioning Constrained Internet of Things (IoT) Devices

    Get PDF
    Addressing the security concerns of constrained Internet of Things (IoT) devices, such as client- side encryption and secure provisioning remains a work in progress. IoT devices characterized by low power and processing capabilities do not exactly fit into the provisions of existing security schemes, as classical security algorithms are built on complex cryptographic functions that are too complex for constrained IoT devices. Consequently, the option for constrained IoT devices lies in either developing new security schemes or modifying existing ones as lightweight. This work presents an improved version of the Advanced Encryption Standard (AES) known as the Efficient Security Algorithm for Power-constrained IoT devices, which addressed some of the security concerns of constrained Internet of Things (IoT) devices, such as client-side encryption and secure provisioning. With cloud computing being the key enabler for the massive provisioning of IoT devices, encryption of data generated by IoT devices before onward transmission to cloud platforms of choice is being advocated via client-side encryption. However, coping with trade-offs remain a notable challenge with Lightweight algorithms, making the innovation of cheaper secu- rity schemes without compromise to security a high desirable in the secure provisioning of IoT devices. A cryptanalytic overview of the consequence of complexity reduction with mathematical justification, while using a Secure Element (ATECC608A) as a trade-off is given. The extent of constraint of a typical IoT device is investigated by comparing the Laptop/SAMG55 implemen- tations of the Efficient algorithm for constrained IoT devices. An analysis of the implementation and comparison of the Algorithm to lightweight algorithms is given. Based on experimentation results, resource constrain impacts a 657% increase in the encryption completion time on the IoT device in comparison to the laptop implementation; of the Efficient algorithm for Constrained IoT devices, which is 0.9 times cheaper than CLEFIA and 35% cheaper than the AES in terms of the encryption completion times, compared to current results in literature at 26%, and with a 93% of avalanche effect rate, well above a recommended 50% in literature. The algorithm is utilised for client-side encryption to provision the device onto AWS IoT core
    corecore