79,829 research outputs found

    Improved differential evolution based on mutation strategies

    Get PDF
    Abstract: Differential Evolution (DE) has been regarded as one of the excellent optimization algorithm in the science, computing and engineering field since its introduction by Storm and Price in 1995. Robustness, simplicity and easiness to implement are the key factors for DE’s success in optimization of engineering problems. However, DE experiences convergence and stagnation problems. This paper focuses on DE convergence speed improvement based on introduction of newly developed mutation schemes strategies with reference to DE/rand/1 on ac-count and tuning of control parameters. Simulations are conducted using bench-mark functions such as Rastrigin, Ackley and Sphere, Griewank and Schwefel function. The results are tabled in order to compare the improved DE with the traditional DE

    Genetic Algorithm and its Variants: Theory and Applications

    Get PDF
    The Genetic Algorithm is a popular optimization technique which is bio-inspired and is based on the concepts of natural genetics and natural selection theories proposed by Charles Darwin. The Algorithm functions on three basic genetic operators of selection, crossover and mutation. Based on the types of these operators GA has many variants like Real coded GA, Binary coded GA, Sawtooth GA, Micro GA, Improved GA, Differential Evolution GA. This paper discusses a few of the forms of GA and applies the techniques to the problem of Function optimization and System Identification. The paper makes a comparative analysis of the advantages and disadvantages of the different types of GA. The computer simulations illustrate the results. It also makes a comparison between the GA technique and Incremental LMS algorithm for System Identification

    Differential evolution with an evolution path: a DEEP evolutionary algorithm

    Get PDF
    Utilizing cumulative correlation information already existing in an evolutionary process, this paper proposes a predictive approach to the reproduction mechanism of new individuals for differential evolution (DE) algorithms. DE uses a distributed model (DM) to generate new individuals, which is relatively explorative, whilst evolution strategy (ES) uses a centralized model (CM) to generate offspring, which through adaptation retains a convergence momentum. This paper adopts a key feature in the CM of a covariance matrix adaptation ES, the cumulatively learned evolution path (EP), to formulate a new evolutionary algorithm (EA) framework, termed DEEP, standing for DE with an EP. Without mechanistically combining two CM and DM based algorithms together, the DEEP framework offers advantages of both a DM and a CM and hence substantially enhances performance. Under this architecture, a self-adaptation mechanism can be built inherently in a DEEP algorithm, easing the task of predetermining algorithm control parameters. Two DEEP variants are developed and illustrated in the paper. Experiments on the CEC'13 test suites and two practical problems demonstrate that the DEEP algorithms offer promising results, compared with the original DEs and other relevant state-of-the-art EAs
    corecore