4 research outputs found

    Improved Differential Attacks for ECHO and Grostl

    Get PDF
    We present improved cryptanalysis of two second-round SHA-3 candidates: the AES-based hash functions ECHO and GROSTL. We explain methods for building better differential trails for ECHO by increasing the granularity of the truncated differential paths previously considered. In the case of GROSTL, we describe a new technique, the internal differential attack, which shows that when using parallel computations designers should also consider the differential security between the parallel branches. Then, we exploit the recently introduced start-from-the-middle or Super-Sbox attacks, that proved to be very efficient when attacking AES-like permutations, to achieve a very efficient utilization of the available freedom degrees. Finally, we obtain the best known attacks so far for both ECHO and GROSTL. In particular, we are able to mount a distinguishing attack for the full GROSTL-256 compression function

    Cryptanalysis of the Round-Reduced Kupyna Hash Function

    Get PDF
    The Kupyna hash function was selected as the new Ukrainian standard DSTU 7564:2014 in 2015. It is designed to replace the old Independent States (CIS) standard GOST 34.311-95. The Kupyna hash function is an AES-based primitive, which uses Merkle-Damgård compression function based on Even-Mansour design. In this paper, we show the first cryptanalytic attacks on the round-reduced Kupyna hash function. Using the rebound attack, we present a collision attack on 5-round of the Kupyna-256 hash function. The complexity of this collision attack is (2120,2642^{120},2^{64}) (in time and memory). Furthermore, we use guess-and-determine MitM attack to construct pseudo-preimage attacks on 6-round Kupyna-256 and Kupyna-512 hash function, respectively. The complexity of these preimage attacks are (2250.33,2250.332^{250.33},2^{250.33}) and (2498.33,2498.332^{498.33},2^{498.33}) (in time and memory), respectively

    (Pseudo) Preimage Attack on Round-Reduced Grøstl Hash Function and Others (Extended Version)

    Get PDF
    The Grøstl hash function is one of the 5 final round candidates of the SHA-3 competition hosted by NIST. In this paper, we study the preimage resistance of the Grøstl hash function. We propose pseudo preimage attacks on Grøstl hash function for both 256-bit and 512-bit versions, i.e. we need to choose the initial value in order to invert the hash function. Pseudo preimage attack on 5(out of 10)-round Grøstl-256 has a complexity of (2244.85,2230.13)(2^{244.85},2^{230.13}) (in time and memory) and pseudo preimage attack on 8(out of 14)-round Grøstl-512 has a complexity of (2507.32,2507.00)(2^{507.32},2^{507.00}). To the best of our knowledge, our attacks are the first (pseudo) preimage attacks on round-reduced Grøstl hash function, including its compression function and output transformation. These results are obtained by a variant of meet-in-the-middle preimage attack framework by Aoki and Sasaki. We also improve the time complexities of the preimage attacks against 5-round Whirlpool and 7-round AES hashes by Sasaki in FSE~2011

    Hardware design of cryptographic accelerators

    Get PDF
    With the rapid growth of the Internet and digital communications, the volume of sensitive electronic transactions being transferred and stored over and on insecure media has increased dramatically in recent years. The growing demand for cryptographic systems to secure this data, across a multitude of platforms, ranging from large servers to small mobile devices and smart cards, has necessitated research into low cost, flexible and secure solutions. As constraints on architectures such as area, speed and power become key factors in choosing a cryptosystem, methods for speeding up the development and evaluation process are necessary. This thesis investigates flexible hardware architectures for the main components of a cryptographic system. Dedicated hardware accelerators can provide significant performance improvements when compared to implementations on general purpose processors. Each of the designs proposed are analysed in terms of speed, area, power, energy and efficiency. Field Programmable Gate Arrays (FPGAs) are chosen as the development platform due to their fast development time and reconfigurable nature. Firstly, a reconfigurable architecture for performing elliptic curve point scalar multiplication on an FPGA is presented. Elliptic curve cryptography is one such method to secure data, offering similar security levels to traditional systems, such as RSA, but with smaller key sizes, translating into lower memory and bandwidth requirements. The architecture is implemented using different underlying algorithms and coordinates for dedicated Double-and-Add algorithms, twisted Edwards algorithms and SPA secure algorithms, and its power consumption and energy on an FPGA measured. Hardware implementation results for these new algorithms are compared against their software counterparts and the best choices for minimum area-time and area-energy circuits are then identified and examined for larger key and field sizes. Secondly, implementation methods for another component of a cryptographic system, namely hash functions, developed in the recently concluded SHA-3 hash competition are presented. Various designs from the three rounds of the NIST run competition are implemented on FPGA along with an interface to allow fair comparison of the different hash functions when operating in a standardised and constrained environment. Different methods of implementation for the designs and their subsequent performance is examined in terms of throughput, area and energy costs using various constraint metrics. Comparing many different implementation methods and algorithms is nontrivial. Another aim of this thesis is the development of generic interfaces used both to reduce implementation and test time and also to enable fair baseline comparisons of different algorithms when operating in a standardised and constrained environment. Finally, a hardware-software co-design cryptographic architecture is presented. This architecture is capable of supporting multiple types of cryptographic algorithms and is described through an application for performing public key cryptography, namely the Elliptic Curve Digital Signature Algorithm (ECDSA). This architecture makes use of the elliptic curve architecture and the hash functions described previously. These components, along with a random number generator, provide hardware acceleration for a Microblaze based cryptographic system. The trade-off in terms of performance for flexibility is discussed using dedicated software, and hardware-software co-design implementations of the elliptic curve point scalar multiplication block. Results are then presented in terms of the overall cryptographic system
    corecore