10,257 research outputs found

    Space-Efficient Routing Tables for Almost All Networks and the Incompressibility Method

    Get PDF
    We use the incompressibility method based on Kolmogorov complexity to determine the total number of bits of routing information for almost all network topologies. In most models for routing, for almost all labeled graphs Θ(n2)\Theta (n^2) bits are necessary and sufficient for shortest path routing. By `almost all graphs' we mean the Kolmogorov random graphs which constitute a fraction of 11/nc1-1/n^c of all graphs on nn nodes, where c>0c > 0 is an arbitrary fixed constant. There is a model for which the average case lower bound rises to Ω(n2logn)\Omega(n^2 \log n) and another model where the average case upper bound drops to O(nlog2n)O(n \log^2 n). This clearly exposes the sensitivity of such bounds to the model under consideration. If paths have to be short, but need not be shortest (if the stretch factor may be larger than 1), then much less space is needed on average, even in the more demanding models. Full-information routing requires Θ(n3)\Theta (n^3) bits on average. For worst-case static networks we prove a Ω(n2logn)\Omega(n^2 \log n) lower bound for shortest path routing and all stretch factors <2<2 in some networks where free relabeling is not allowed.Comment: 19 pages, Latex, 1 table, 1 figure; SIAM J. Comput., To appea

    The Max-Distance Network Creation Game on General Host Graphs

    Full text link
    In this paper we study a generalization of the classic \emph{network creation game} in the scenario in which the nn players sit on a given arbitrary \emph{host graph}, which constrains the set of edges a player can activate at a cost of α0\alpha \geq 0 each. This finds its motivations in the physical limitations one can have in constructing links in practice, and it has been studied in the past only when the routing cost component of a player is given by the sum of distances to all the other nodes. Here, we focus on another popular routing cost, namely that which takes into account for each player its \emph{maximum} distance to any other player. For this version of the game, we first analyze some of its computational and dynamic aspects, and then we address the problem of understanding the structure of associated pure Nash equilibria. In this respect, we show that the corresponding price of anarchy (PoA) is fairly bad, even for several basic classes of host graphs. More precisely, we first exhibit a lower bound of Ω(n/(1+α))\Omega (\sqrt{ n / (1+\alpha)}) for any α=o(n)\alpha = o(n). Notice that this implies a counter-intuitive lower bound of Ω(n)\Omega(\sqrt{n}) for very small values of α\alpha (i.e., edges can be activated almost for free). Then, we show that when the host graph is restricted to be either kk-regular (for any constant k3k \geq 3), or a 2-dimensional grid, the PoA is still Ω(1+min{α,nα})\Omega(1+\min\{\alpha, \frac{n}{\alpha}\}), which is proven to be tight for α=Ω(n)\alpha=\Omega(\sqrt{n}). On the positive side, if αn\alpha \geq n, we show the PoA is O(1)O(1). Finally, in the case in which the host graph is very sparse (i.e., E(H)=n1+k|E(H)|=n-1+k, with k=O(1)k=O(1)), we prove that the PoA is O(1)O(1), for any α\alpha.Comment: 17 pages, 4 figure

    Shortest Reconfiguration of Colorings Under Kempe Changes

    Get PDF
    International audienc

    Compact Routing on Internet-Like Graphs

    Full text link
    The Thorup-Zwick (TZ) routing scheme is the first generic stretch-3 routing scheme delivering a nearly optimal local memory upper bound. Using both direct analysis and simulation, we calculate the stretch distribution of this routing scheme on random graphs with power-law node degree distributions, PkkγP_k \sim k^{-\gamma}. We find that the average stretch is very low and virtually independent of γ\gamma. In particular, for the Internet interdomain graph, γ2.1\gamma \sim 2.1, the average stretch is around 1.1, with up to 70% of paths being shortest. As the network grows, the average stretch slowly decreases. The routing table is very small, too. It is well below its upper bounds, and its size is around 50 records for 10410^4-node networks. Furthermore, we find that both the average shortest path length (i.e. distance) dˉ\bar{d} and width of the distance distribution σ\sigma observed in the real Internet inter-AS graph have values that are very close to the minimums of the average stretch in the dˉ\bar{d}- and σ\sigma-directions. This leads us to the discovery of a unique critical quasi-stationary point of the average TZ stretch as a function of dˉ\bar{d} and σ\sigma. The Internet distance distribution is located in a close neighborhood of this point. This observation suggests the analytical structure of the average stretch function may be an indirect indicator of some hidden optimization criteria influencing the Internet's interdomain topology evolution.Comment: 29 pages, 16 figure
    corecore