58 research outputs found

    Experimental Design for Sensitivity Analysis, Optimization and Validation of Simulation Models

    Get PDF
    This chapter gives a survey on the use of statistical designs for what-if analysis in simula- tion, including sensitivity analysis, optimization, and validation/verification. Sensitivity analysis is divided into two phases. The first phase is a pilot stage, which consists of screening or searching for the important factors among (say) hundreds of potentially important factors. A novel screening technique is presented, namely sequential bifurcation. The second phase uses regression analysis to approximate the input/output transformation that is implied by the simulation model; the resulting regression model is also known as a metamodel or a response surface. Regression analysis gives better results when the simu- lation experiment is well designed, using either classical statistical designs (such as frac- tional factorials) or optimal designs (such as pioneered by Fedorov, Kiefer, and Wolfo- witz). To optimize the simulated system, the analysts may apply Response Surface Metho- dology (RSM); RSM combines regression analysis, statistical designs, and steepest-ascent hill-climbing. To validate a simulation model, again regression analysis and statistical designs may be applied. Several numerical examples and case-studies illustrate how statisti- cal techniques can reduce the ad hoc character of simulation; that is, these statistical techniques can make simulation studies give more general results, in less time. Appendix 1 summarizes confidence intervals for expected values, proportions, and quantiles, in termi- nating and steady-state simulations. Appendix 2 gives details on four variance reduction techniques, namely common pseudorandom numbers, antithetic numbers, control variates or regression sampling, and importance sampling. Appendix 3 describes jackknifing, which may give robust confidence intervals.least squares;distribution-free;non-parametric;stopping rule;run-length;Von Neumann;median;seed;likelihood ratio

    Design and analysis of computer experiments for stochastic systems

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Experimental Design for Sensitivity Analysis, Optimization and Validation of Simulation Models

    Get PDF

    A Methodology for Fitting and Validating Metamodels in Simulation

    Get PDF
    This expository paper discusses the relationships among metamodels, simulation models, and problem entities. A metamodel or response surface is an approximation of the input/output function implied by the underlying simulation model. There are several types of metamodel: linear regression, splines, neural networks, etc. This paper distinguishes between fitting and validating a metamodel. Metamodels may have different goals: (i) understanding, (ii) prediction, (iii) optimization, and (iv) verification and validation. For this metamodeling, a process with thirteen steps is proposed. Classic design of experiments (DOE) is summarized, including standard measures of fit such as the R-square coefficient and cross-validation measures. This DOE is extended to sequential or stagewise DOE. Several validation criteria, measures, and estimators are discussed. Metamodels in general are covered, along with a procedure for developing linear regression (including polynomial) metamodels.
    corecore