47 research outputs found

    User Intent Prediction in Information-seeking Conversations

    Full text link
    Conversational assistants are being progressively adopted by the general population. However, they are not capable of handling complicated information-seeking tasks that involve multiple turns of information exchange. Due to the limited communication bandwidth in conversational search, it is important for conversational assistants to accurately detect and predict user intent in information-seeking conversations. In this paper, we investigate two aspects of user intent prediction in an information-seeking setting. First, we extract features based on the content, structural, and sentiment characteristics of a given utterance, and use classic machine learning methods to perform user intent prediction. We then conduct an in-depth feature importance analysis to identify key features in this prediction task. We find that structural features contribute most to the prediction performance. Given this finding, we construct neural classifiers to incorporate context information and achieve better performance without feature engineering. Our findings can provide insights into the important factors and effective methods of user intent prediction in information-seeking conversations.Comment: Accepted to CHIIR 201

    Incorporating Loose-Structured Knowledge into Conversation Modeling via Recall-Gate LSTM

    Full text link
    Modeling human conversations is the essence for building satisfying chat-bots with multi-turn dialog ability. Conversation modeling will notably benefit from domain knowledge since the relationships between sentences can be clarified due to semantic hints introduced by knowledge. In this paper, a deep neural network is proposed to incorporate background knowledge for conversation modeling. Through a specially designed Recall gate, domain knowledge can be transformed into the extra global memory of Long Short-Term Memory (LSTM), so as to enhance LSTM by cooperating with its local memory to capture the implicit semantic relevance between sentences within conversations. In addition, this paper introduces the loose structured domain knowledge base, which can be built with slight amount of manual work and easily adopted by the Recall gate. Our model is evaluated on the context-oriented response selecting task, and experimental results on both two datasets have shown that our approach is promising for modeling human conversations and building key components of automatic chatting systems.Comment: under review of IJCNN 2017; 10 pages, 5 figure

    Sentence Pair Scoring: Towards Unified Framework for Text Comprehension

    Full text link
    We review the task of Sentence Pair Scoring, popular in the literature in various forms - viewed as Answer Sentence Selection, Semantic Text Scoring, Next Utterance Ranking, Recognizing Textual Entailment, Paraphrasing or e.g. a component of Memory Networks. We argue that all such tasks are similar from the model perspective and propose new baselines by comparing the performance of common IR metrics and popular convolutional, recurrent and attention-based neural models across many Sentence Pair Scoring tasks and datasets. We discuss the problem of evaluating randomized models, propose a statistically grounded methodology, and attempt to improve comparisons by releasing new datasets that are much harder than some of the currently used well explored benchmarks. We introduce a unified open source software framework with easily pluggable models and tasks, which enables us to experiment with multi-task reusability of trained sentence model. We set a new state-of-art in performance on the Ubuntu Dialogue dataset.Comment: submitted as paper to CoNLL 201

    Do Response Selection Models Really Know What's Next? Utterance Manipulation Strategies for Multi-turn Response Selection

    Full text link
    In this paper, we study the task of selecting the optimal response given a user and system utterance history in retrieval-based multi-turn dialog systems. Recently, pre-trained language models (e.g., BERT, RoBERTa, and ELECTRA) showed significant improvements in various natural language processing tasks. This and similar response selection tasks can also be solved using such language models by formulating the tasks as dialog--response binary classification tasks. Although existing works using this approach successfully obtained state-of-the-art results, we observe that language models trained in this manner tend to make predictions based on the relatedness of history and candidates, ignoring the sequential nature of multi-turn dialog systems. This suggests that the response selection task alone is insufficient for learning temporal dependencies between utterances. To this end, we propose utterance manipulation strategies (UMS) to address this problem. Specifically, UMS consist of several strategies (i.e., insertion, deletion, and search), which aid the response selection model towards maintaining dialog coherence. Further, UMS are self-supervised methods that do not require additional annotation and thus can be easily incorporated into existing approaches. Extensive evaluation across multiple languages and models shows that UMS are highly effective in teaching dialog consistency, which leads to models pushing the state-of-the-art with significant margins on multiple public benchmark datasets.Comment: Accepted to AAAI 202

    Diversifying Topic-Coherent Response Generation for Natural Multi-turn Conversations

    Full text link
    Although response generation (RG) diversification for single-turn dialogs has been well developed, it is less investigated for natural multi-turn conversations. Besides, past work focused on diversifying responses without considering topic coherence to the context, producing uninformative replies. In this paper, we propose the Topic-coherent Hierarchical Recurrent Encoder-Decoder model (THRED) to diversify the generated responses without deviating the contextual topics for multi-turn conversations. In overall, we build a sequence-to-sequence net (Seq2Seq) to model multi-turn conversations. And then we resort to the latent Variable Hierarchical Recurrent Encoder-Decoder model (VHRED) to learn global contextual distribution of dialogs. Besides, we construct a dense topic matrix which implies word-level correlations of the conversation corpora. The topic matrix is used to learn local topic distribution of the contextual utterances. By incorporating both the global contextual distribution and the local topic distribution, THRED produces both diversified and topic-coherent replies. In addition, we propose an explicit metric (\emph{TopicDiv}) to measure the topic divergence between the post and generated response, and we also propose an overall metric combining the diversification metric (\emph{Distinct}) and \emph{TopicDiv}. We evaluate our model comparing with three baselines (Seq2Seq, HRED and VHRED) on two real-world corpora, respectively, and demonstrate its outstanding performance in both diversification and topic coherence

    Modeling Multi-turn Conversation with Deep Utterance Aggregation

    Full text link
    Multi-turn conversation understanding is a major challenge for building intelligent dialogue systems. This work focuses on retrieval-based response matching for multi-turn conversation whose related work simply concatenates the conversation utterances, ignoring the interactions among previous utterances for context modeling. In this paper, we formulate previous utterances into context using a proposed deep utterance aggregation model to form a fine-grained context representation. In detail, a self-matching attention is first introduced to route the vital information in each utterance. Then the model matches a response with each refined utterance and the final matching score is obtained after attentive turns aggregation. Experimental results show our model outperforms the state-of-the-art methods on three multi-turn conversation benchmarks, including a newly introduced e-commerce dialogue corpus.Comment: Proceedings of the 27th International Conference on Computational Linguistics (COLING 2018

    Improving Response Selection in Multi-Turn Dialogue Systems by Incorporating Domain Knowledge

    Full text link
    Building systems that can communicate with humans is a core problem in Artificial Intelligence. This work proposes a novel neural network architecture for response selection in an end-to-end multi-turn conversational dialogue setting. The architecture applies context level attention and incorporates additional external knowledge provided by descriptions of domain-specific words. It uses a bi-directional Gated Recurrent Unit (GRU) for encoding context and responses and learns to attend over the context words given the latent response representation and vice versa.In addition, it incorporates external domain specific information using another GRU for encoding the domain keyword descriptions. This allows better representation of domain-specific keywords in responses and hence improves the overall performance. Experimental results show that our model outperforms all other state-of-the-art methods for response selection in multi-turn conversations.Comment: Published as conference paper at CoNLL 201

    Strategy of the Negative Sampling for Training Retrieval-Based Dialogue Systems

    Full text link
    The article describes the new approach for quality improvement of automated dialogue systems for customer support service. Analysis produced in the paper demonstrates the dependency of the quality of the retrieval-based dialogue system quality on the choice of negative responses. The proposed approach implies choosing the negative samples according to the distribution of responses in the train set. In this implementation the negative samples are randomly chosen from the original response distribution and from the "artificial" distribution of negative responses, such as uniform distribution or the distribution obtained by transformation of the original one. The results obtained for the implemented systems and reported in this paper confirm the significant improvement of automated dialogue systems quality in case of using the negative responses from transformed distribution

    Sequential Attention-based Network for Noetic End-to-End Response Selection

    Full text link
    The noetic end-to-end response selection challenge as one track in Dialog System Technology Challenges 7 (DSTC7) aims to push the state of the art of utterance classification for real world goal-oriented dialog systems, for which participants need to select the correct next utterances from a set of candidates for the multi-turn context. This paper describes our systems that are ranked the top on both datasets under this challenge, one focused and small (Advising) and the other more diverse and large (Ubuntu). Previous state-of-the-art models use hierarchy-based (utterance-level and token-level) neural networks to explicitly model the interactions among different turns' utterances for context modeling. In this paper, we investigate a sequential matching model based only on chain sequence for multi-turn response selection. Our results demonstrate that the potentials of sequential matching approaches have not yet been fully exploited in the past for multi-turn response selection. In addition to ranking the top in the challenge, the proposed model outperforms all previous models, including state-of-the-art hierarchy-based models, and achieves new state-of-the-art performances on two large-scale public multi-turn response selection benchmark datasets.Comment: Ranked first in DSTC7 Track 1. Accepted for an oral presentation at the DSTC7 workshop at AAAI 2019. The source code is available no

    Mix-and-Match: Scalable Dialog Response Retrieval using Gaussian Mixture Embeddings

    Full text link
    Embedding-based approaches for dialog response retrieval embed the context-response pairs as points in the embedding space. These approaches are scalable, but fail to account for the complex, many-to-many relationships that exist between context-response pairs. On the other end of the spectrum, there are approaches that feed the context-response pairs jointly through multiple layers of neural networks. These approaches can model the complex relationships between context-response pairs, but fail to scale when the set of responses is moderately large (>100). In this paper, we combine the best of both worlds by proposing a scalable model that can learn complex relationships between context-response pairs. Specifically, the model maps the contexts as well as responses to probability distributions over the embedding space. We train the models by optimizing the Kullback-Leibler divergence between the distributions induced by context-response pairs in the training data. We show that the resultant model achieves better performance as compared to other embedding-based approaches on publicly available conversation data.Comment: 10 pages, 2 figure
    corecore